Math 2411B

Quiz One

September 12, 2000

You may use any books, notes, tables, calculators, or computers you wish. Be sure and write so that someone other than yourself can understand your exposition.

1. Let *C* be the curve described by

$$\mathbf{r}(t) = (t^3 + 7)\mathbf{i} + 2t\mathbf{j} + (t^2 - 1)\mathbf{k}.$$

Find *all* points on *C* at which the tangent line is parallel to the line

$$l(t) = (5+6t)\mathbf{i} + (9+t)\mathbf{j} + (1-2t)\mathbf{k},$$

or explain carefully why there are no such points.

A straight line in the direction of a vector **b** is described by a function of the form $l(t) = \mathbf{a} + t\mathbf{b}$. Thus a vector **b** in the direction of the given line is $\mathbf{b} = 6\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

Now, a vector tangent to the curve C at the point $\mathbf{r}(t)$ is simply the derivative

$$\mathbf{r}'(t) = 3t^2\mathbf{i} + 2\mathbf{j} + 2t\mathbf{k}.$$

For **b** and $\mathbf{r}'(t)$ to have the same direction, it must be true that $\mathbf{r}'(t) = \alpha \mathbf{b}$ for some scalar α . In other words,

$$3t^2 = 6\alpha$$

$$2 = \alpha$$

$$2t = -2\alpha$$

There is exactly one solution to this system of three equation, t = -2. Thus there is exactly one point, $\mathbf{r}(-2) = -\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}$, on C at which the tangent is parallel to the line described by l(t).

2. Find the curvature and torsion of the curve described by

$$\mathbf{r}(t) = \cos t \mathbf{i} + \cos t \mathbf{j} + \sqrt{2} \sin t \mathbf{k}.$$

The curvature $\kappa = \left| \frac{d\mathbf{T}}{ds} \right|$ and $\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$. Also, $\mathbf{B} = \mathbf{T} \times \mathbf{N}$, and $\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}$, where τ is the torsion. We need to compute all these. Here we go.

$$\mathbf{r}'(t) = -\sin t\mathbf{i} - \sin t\mathbf{j} + \sqrt{2}\cos t\mathbf{k}$$

Thus.

$$|r'(t)| = \sqrt{\sin^2 t + \sin^2 t + 2\cos^2 t} = \sqrt{2}$$

and so

$$\mathbf{T} = \frac{r'(t)}{|r'(t)|} = \frac{1}{\sqrt{2}} \left(-\sin t \mathbf{i} - \sin t \mathbf{j} + \sqrt{2} \cos t \mathbf{k} \right).$$

Continuing,

$$\frac{d\mathbf{T}}{dt} = \frac{1}{\sqrt{2}} \left(-\cos t\mathbf{i} - \cos t\mathbf{j} - \sqrt{2} \sin t\mathbf{k} \right).$$

Thus,

$$\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N} = \frac{d\mathbf{T}}{dt} / \frac{ds}{dt} = \frac{1}{\sqrt{2}} \frac{d\mathbf{T}}{dt}$$
$$= \frac{1}{2} \left(-\cos t \mathbf{i} - \cos t \mathbf{j} - \sqrt{2} \sin t \mathbf{k} \right)$$

So the curvature

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{1}{2}.$$

Note that $\mathbf{N} = -\cos t\mathbf{i} - \cos t\mathbf{j} - \sqrt{2}\sin t\mathbf{k}$.

For the torsion, we need the binormal $\mathbf{B} = \mathbf{T} \times \mathbf{N}$:

$$\mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sin t & -\sin t & \sqrt{2}\cos t \\ -\cos t & -\cos t & -\sqrt{2}\sin t \end{vmatrix}$$
$$= \sqrt{2}\mathbf{i} - \sqrt{2}\mathbf{j}$$

The binormal is constant, and so its derivative is zero–hence the torsion $\tau = 0$.

Finis