
Maps, Great Circles, Rhumb Lines, and All That

I. Mercator’s Map. The domain of the usual spherical coordinates vector description, or
parameterization, of a sphere of radius a

rλ,ϕ = acosϕcosλi + cosϕ sinλj + sinϕk,

where ϕ is latitude and λ is longitude, provides a map of the surface of the Earth. This map is the
plate carée and is one of the oldest map projections known. It has essentially nothing to
recommend it. It is clear, of course, that shapes are distorted–on the map, meridians are parallel,
while on the surface of the Earth, they meet at the poles. Worse yet for navigational purposes, it is
not conformal: a straight line on the map does not represent a curve on the Earth that intersects
each meridian at the same angle (Such a curve is called a rhumb line.). Let’s see if we can modify
this map to obtain one on which straight lines represent rhumb lines. Specifically, we shall ”scale”
the vertical axis so that the resulting vector function is conformal. He we go.

The horizontal axis of our domain will remain simply longitude λ. Suppose latitude ϕ is a
to-be-determined function ϕy of the vertical, or y-coordinate. Our vector description of the
Earth’s surface is thus

Rλ,y = acosϕycosλi + cosϕy sinλj + sinϕyk

Now, the image of the straight line

Lλ = mλ − λ0 + y0

on the map is the curve described by

Pλ = Rλ,Lλ.

If γ is the angle between this curve and the meridian passing through Rλ,Lλ, then

cosγ =
P ′λ ⋅ ∂R

∂y

|P ′λ| ∂R
∂y

.

Now,

∂R
∂y

= a− sinϕcosλi − sinϕ sinλj + cosϕk dϕ
dy

, and

P ′λ = ∂R
∂λ + ∂R

∂y
L ′λ = ∂R

∂λ + ∂R
∂y

m.

Hence,

cosγ =
P ′λ ⋅ ∂R

∂y

|P ′λ| ∂R
∂y

=
m ∂R

∂y

2

|P ′λ| ∂R
∂y

=
m ∂R

∂y

|P ′λ|
.
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A bit of calculation yields

|P ′λ| = a cos2ϕ + m2 dϕ
dy

2

, and

∂R
∂y

= a
dϕ
dy

.

Thus,

cosγ =
m ∂R

∂y

|P ′λ|
= m

cos2ϕ + m2 dϕ
dy

2

dϕ
dy

.

The slope of our straight line on the map is m, so the cosine of the angle between this line and the
vertical axis is m

1+m2
. We therefore want to have

m

cos2ϕ + m2 dϕ
dy

2

dϕ
dy

= m
1 + m2

,

or,

dϕ
dy

2

= cos2ϕ

It should be clear that we want ϕy to be an increasing function, and we want ϕ0 = 0. This
gives us a very nonlinear initial value problem to solve for ϕy :

dϕ
dy

= cosϕ, ϕ0 = 0.

We do have seperable variables. Thus,

lnsecϕ + tanϕ = y + c,

and the inital condition becomes ln1 = c = 0. Hence,

secϕ + tanϕ = ey,

or, after a bit of trigonometric hocus-pocus,

ey = tan
ϕ
2

+ π
4

.

At last,

ϕ = 2 tan−1ey − π
2

A map so constructed is the invention(discovery?) of the famous Flemish mapmaker Gerardus
Mercator (1512-1594). [Meditate on the fact that the discoverers of calculus, Newton and
Leibniz, were born in 1642 and 1647, respectively.]

II. Distances. Let’s compute the so-called rhumb line distance between two points on the surface
of the Earth—this being the length of the rhumb line joining the two points. We now know the
rhumb line is simply the image of the straight line segement between the two places on Mercator’s
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map. Thus, the segment from λ0,y0 to λ1,y1 is

Lλ = mλ − λ0 + y0, λ0 ≤ λ ≤ λ1,

where the slope m is

m = y1 − y0

λ1 − λ2
.

We have from the previous section that

|P ′λ| = a cos2ϕ + m2 dϕ
dy

2

= a cos2ϕ + m2 cos2ϕ

= a 1 + m2 |cosϕ|.

Hence, the length D of our curve is

D = ∫
λ0

λ1

|P ′λ|dλ

= a 1 + m2 ∫
λ0

λ1

cosϕLλdλ.

Next let’s see what happens if m = 0. In that case, Lλ = y0, and our distances becomes simply

D = acosy0λ1 − λ0,

which is exactly what we expect. Turn now to the interesting case in which m ≠ 0 and change
variables in the integral for D. Specifically, let ξ = Lλ. Then

D = a 1 + m2

m ∫
Lλ0

Lλ1

cosϕξdξ.

Now let ψ = ϕξ. Then dψ = dϕ
dξ

dξ = cosψdξ. The above integral is then simply

∫
Lλ0

Lλ1

cosϕξdξ = ∫
ϕ0

ϕ1

dψ = ϕ1 − ϕ0.

Hence,

D = a 1 + m2

m ϕ1 − ϕ0

Let’s now get m in terms of longitude and latitude. First,

y1 − y0 = lnsecϕ1 + tanϕ1 − lnsecϕ0 + tanϕ0
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= ln
sinϕ1 + 1cosϕ0

sinϕ0 + 1cosϕ1

Thus,

m = 1
λ1 − λ0

ln
sinϕ1 + 1cosϕ0

sinϕ0 + 1cosϕ1
.

Now we shall compute this distance between the two great port cities of Hamburg, Germany, and
Wilmington, N. C. Wilmington is at long 77.55 W, lat 34.13 N, while Hamburg is found at long
9.59 E, lat 53.33 N (brrr...). Making the obvious changes in coordinates, this gives us
λ0,ϕ0 = 0, 34.13

360 2π = 0,0.59568 for Wilmington, and for Hamburg we have
λ1,ϕ1 = 77.55+9.59

360 2π, 53.33
360 2π = 1. 5209,0.93078. Thus we have

m = 1
1.5209

ln sin0.93078 + 1cos0.59568
sin0.59568 + 1cos0.93078

= 0. 30905

Now,

D = a 1 + m2

m 0.93078 − 0.59568

= 1.1349a

The radius a of the Earth is 3963.0 miles. The rhumb line distance between these two fine cities is
therefore

D = 3963.01.1349 = 4497. 6 miles

The great circle distance between two spots on Earth, one at λ0,ϕ0 and one at λ1,ϕ1 is simply

C = acos−1 rλ0,ϕ0 ⋅ rλ1,ϕ1
a2

In the case of Hamburg and Wilmington, we have

cos−1 rλ0,ϕ0 ⋅ rλ1,ϕ1
a2 = cos−1 r0,0. 59568 ⋅ r1. 5209,0. 93078

a2

= cos−10.47468 = 1. 0762

Thus the great circle distance between the two is

C = 1. 07623963.0 = 4265.0 miles.
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