Math 2401 Quiz 6 Solutions

1. Give one iterated integral for the integral $\iint_{\Omega} x \sin(xy) dA$, where Ω is the part of the region inside the circle $x^2 + (y-1)^2 = 1$ that is above the curve $y = 5x^2$. Also give a **Maple** command for evaluating the iterated integral.

As always, begin with a picture:

Next, let's see where the two curves intersect. If $y = 5x^2$ and $x^2 + (y - 1)^2 = 1$, simply substitute $x^2 = y/5$ into the second of these equations:

$$x^{2} + (y-1)^{2} = \frac{y}{5} + (y-1)^{2} = 1, \text{ or}$$

$$\frac{y}{5} + y^{2} - 2y + 1 = 1,$$

$$y^{2} - \frac{9}{5}y = y(y - \frac{9}{5}) = 0$$

The curves thus meet where y=0 (obviously) and where $y=\frac{9}{5}$. Now when $y=\frac{9}{5}$, we have $x^2=y/5=\frac{9}{25}$. The two interesting intersection points are thus $(-\frac{3}{5},\frac{9}{5})$ and $(\frac{3}{5},\frac{9}{5})$ Now,

$$\iint_{\Omega} x \sin(xy) dA = \int_{-3/5}^{3/5} \int_{5x^2}^{1+\sqrt{1-x^2}} x \sin(xy) dy dx.$$

A **Maple** command to compute this:

$$int(int(x*sin(x*y),y=5*x^2..1+sqrt(1-x^2)),x=-3/5..3/5);$$

2. Consider the integral

$$\iiint_T (xy+z^2)dV,$$

where T is the solid bounded below by z = -2 and above by $z = -\sqrt{x^2 + y^2}$. a)Give an iterated integral for this in which the first integration is with respect to z.

As always, a picture:

The projection of this onto the x-y plane is simple the circular region C: $\sqrt{x^2 + y^2} \le 2$. Thus

$$\iiint_{T} (xy + z^{2}) dV = \iint_{C} \left(\int_{-2}^{-\sqrt{x^{2} + y^{2}}} (xy + z^{2}) dz \right) dA$$

$$= \int_{-2}^{2} \int_{-\sqrt{4 - y^{2}}}^{\sqrt{4 - y^{2}}} \int_{-2}^{-\sqrt{x^{2} + y^{2}}} (xy + z^{2}) dz dx dy, \text{ or }$$

$$= \int_{-2}^{2} \int_{-\sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} \int_{-2}^{-\sqrt{x^{2} + y^{2}}} (xy + z^{2}) dz dy dx, \text{ or }$$

$$= \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{2\pi} (r^{2} \cos \theta \sin \theta + z^{2}) r dz dr d\theta$$

b) Now give an iterated integral in which we integrate first with respect to x.

Here we project onto the y-z (or x = 0) plane, and we see $z = -\sqrt{y^2} = |y|$:

Thus,

$$\iiint_{T} (xy + z^{2}) dV = \iint_{R} \left(\int_{-\sqrt{z^{2} - y^{2}}}^{\sqrt{z^{2} - y^{2}}} (xy + z^{2}) dx \right) dA$$
$$= \int_{-2}^{0} \int_{z}^{-z} \int_{-\sqrt{z - y^{2}}}^{\sqrt{z - y^{2}}} (xy + z^{2}) dx dy dz$$

3. Let $F(x, y, z) = x\mathbf{i} + (x + y)\mathbf{j} + \mathbf{k}$. a)Find the integral of **F** from (1, 0, 0) to $(1, 0, 2\pi)$ over the path

$$\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}, \ 0 \le t \le 2\pi.$$

 $\mathbf{F}(\mathbf{r}(t)) = \cos t\mathbf{i} + (\cos t + \sin t)\mathbf{j} + \mathbf{k},$

 $\mathbf{r}'(t) = -\sin t\mathbf{i} + \cos t\mathbf{j} + \mathbf{k}.$

$$\int_{P} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)dt$$

$$= \int_{0}^{2\pi} (-\sin t \cos t + \cos^{2} t + \cos t \sin t + 1)dt$$

$$= \int_{0}^{2\pi} \frac{1}{2} (1 + \cos 2t)dt + \int_{0}^{2\pi} dt$$

$$= \pi + 2\pi = 3\pi.$$

b) Find the integral of **F** along the straight line segment joining (1,0,0) and $(1,0,2\pi)$.

 $\mathbf{r}(t) = \mathbf{i} + t\mathbf{k}$, $0 \le t \le 2\pi$. Thus, $\mathbf{F}(\mathbf{r}(t)) = \mathbf{i} + \mathbf{j} + \mathbf{k}$, and $\mathbf{r}'(t) = \mathbf{k}$. Hence,

$$\int_{L} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$
$$= \int_{0}^{2\pi} dt = 2\pi.$$

4. Find a function g such that

$$\nabla g = (yz + 2xy + y^2)\mathbf{i} + (x^2 + xz + 2xy + 1)\mathbf{j} + (2z + xy)\mathbf{k}$$

$$\frac{\partial g}{\partial x} = yz + 2xy + y^2, \text{ and so}$$

$$g = xyz + x^2y + xy^2 + \varphi(y, z)$$

Now then

$$\frac{\partial g}{\partial y} = xz + x^2 + 2xy + \frac{\partial \varphi}{\partial y}(y, z) = x^2 + xz + 2xy + 1, \text{ or}$$

$$\frac{\partial \varphi}{\partial y}(y, z) = 1, \text{ and so}$$

$$\varphi(y, z) = y + \lambda(z).$$

Thus,

$$g = xyz + x^2y + xy^2 + \varphi(y, z) = xyz + x^2y + xy^2 + y + \lambda(z).$$

Now,

$$\frac{\partial g}{\partial z} = xy + \lambda'(z) = 2z + xy$$
, or $\lambda'(z) = 2z$.

Thus, $\lambda(z) = z^2$, and we have

$$g = xyz + x^{2}y + xy^{2} + y + \lambda(z)$$

= $xyz + x^{2}y + xy^{2} + y + z^{2}$