Chapter One - Linear Spaces

Definition. A **linear space** is a collection V of complex (real) valued functions all having the same domain such that (i) if *f* and *g* are members of V, then so also is f + g; (ii) if *f* is a member of V and α is a scalar, then αf is also a member of V. [*scalar* means complex number in case the members of V are complex valued and means real number in case the members of V are real valued.]

Example. The usual Euclidean *n*-space \mathbb{R}^n consisting of the set of all *n*-tuples (x_1, x_2, \dots, x_n) of real numbers is a linear space. Here we interpret an *n*-tuple as a function whose domain is the set of integers $\{1, 2, \dots, n\}$.

Exercises. Which of the following sets of functions are linear spaces?

- **1.** All continuous real valued functions defined on the interval [0, 1].
- 2. All functions defined on the real line and having a finite number of discontinuities.
- **3.** All functions defined on the real line and having exactly one discontinuity.
- **4.** All functions *f* defined on the real line such that f(0) = 0.
- **5.** All functions *f* defined on the real line such that f(0) = 1.

Definition. If V is a linear space and $W \subset V$ is also a linear space, then we say W is a **subspace** of V.

Example. Let $\mathbf{V} = \mathbf{R}^2$ and let $\mathbf{W} = \{(x, y) \in \mathbf{R}^2 : 3x - 2y = 0\}$. Then \mathbf{W} is a subspace of \mathbf{V} .

Exercises.

6. Let V be the set of all polynomials(real) of degree ≤ 5 , and let W be the set of all polynomials(real) of degree ≤ 3 . Is W a subspace of V? Explain.

7. Describe all subspaces of \mathbf{R}^3 .

8. Suppose U and W are both subspaces of V. Is the intersection $U \cap W$ necessarily a subspace of V? Explain.

Definition. If $f_1, f_2, ..., f_n$ are members of a linear space and $\alpha_1, \alpha_2, ..., \alpha_n$ are scalars, then the function $\alpha_1 f_1 + \alpha_2 f_2 + ... + \alpha_n f_n$ is called a **linear combination** of the functions.

Definition. Suppose V is a linear space and $A \subset V$. The **span** of A is the set of all linear combinations of elements of A.

Proposition 1.1. If $A \subset V$, then the span of *A* is a subspace of **V**.

Definition. If W is a subspace of the linear space V and A is a subset of V such that W is the span of A, then A is said to **span** W.

Example. In the linear space of all continuous real valued functions, the span of the functions $1, x, x^2$ is the set of all polynomials of degree ≤ 2 .

Exercises.

9. In real Euclidean space \mathbb{R}^3 , describe the span of (1, 1, 1), (1, 2, 3), and (2, 3, 4). 10. Is the function $\sin^2 x$ a member of the span of the collection 1, $\cos x$, $\cos 2x$, $\cos 3x$? Explain.

11. Show that the collection of all solutions of the differential equation y'' + 3y' + 2y = 0 is a linear space and find a finite collection of functions which spans this space.

Definition. A set $\{f_1, f_2, ..., f_n\}$ of functions in a linear space is **linearly dependent** if there are scalars $\alpha_1, \alpha_2, ..., \alpha_n$, not all zero, such that $\alpha_1 f_1 + \alpha_2 f_2 + ... + \alpha_n f_n = 0$. A set that is not linearly dependent is said to be **linearly independent**. An infinite collection is said to be linearly independent.

Proposition 1.2. A set $\{f_1, f_2, ..., f_n\}$ is linearly dependent if and only if one of the functions is a linear combination of the others.

Definition. Suppose V is a linear space. A linearly independent set $A \subset V$ that spans V is called a **base** for V.

Proposition 1.3. If the linear space V has a base consisting of exactly *n* elements, then every base for V consists of exactly *n* elements.

Definition. If the linear space V has a base consisting of n elements, then V is said to be **finite** dimensional and n is the dimension of V. A space that is not finite dimensional is said to be infinite dimensional.

Example. In real Euclidean space \mathbf{R}^{n} , the collection $\{(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 1)\}$ is a base.

Another example. The space of all real polynomials of degree $\leq n$ is finite dimensional.

Exercises.

12. Let V be the linear space spanned by the functions $\{e^x, e^{-x}, \cosh x, \sinh x\}$. Find a base for V. What is the dimension of V? Explain.

13. What is the dimension of the space described in Exercise 9? Explain.

14. Is the space of all real polynomials finite dimensional? Why?

Proposition 1.4. Suppose the dimension of V is n. Then any linearly independent collection of n elements of V is a base, and any collection of more than n elements is linearly dependent.

Proposition 1.5. Suppose the dimension of V is n. Then any collection of n elements that spans V is a base, any collection of fewer than n elements does not span V.

Proposition 1.6. Suppose $\{u_1, u_2, ..., u_n\}$ is a base for **V**. Then any element $v \in \mathbf{V}$ can be written uniquely as $v = \alpha_1 u_1 + \alpha_2 u_2 + ..., \alpha_n u_n$. The scalars $\alpha_1, \alpha_2, ..., \alpha_n$ are called the **coordinates** of *v* with respect to the given base.

Example. Let V be the space spanned by the set $\{e^x, e^{-x}\}$. This collection is linearly independent and so is a base for V. The coordinates of $\cosh x$ with respect to this base are (1/2, 1/2):

$$\cosh x = \frac{e^x + e^{-x}}{2} = \frac{1}{2}e^x + \frac{1}{2}e^{-x}.$$

Exercises.

15. a)Show that the set $B = \{1 - x^2, 1 + x^2\}$ is linearly independent.

b)Show that $5 - 2x^2$ is in the space spanned by *B*, and find its coordinates with respect to *B*. **16.** Find a base for the space of all solutions of the differential equation y'' + y = 0.