
Chapter Two - Inner Product Spaces

Definition. Suppose V is a linear space. An inner product on V is a scalar valued function F from
pairs of elements of V such that
i Ff, f ≥ 0.
ii Ff,g = Fg, f,
iii Fαf,g = αFf,g,
iv Ff + g,h = Ff,h + Fg,h.

Note. Where there is no danger of confusion, we shall write simply f,g for Ff,g.

Proposition 2.1. An inner product has the following properties:
i f,αg = αf,g ii f,g + h = f,g + f,h

Example. In real Euclidean n-space, define u,v = ∑
j=1

n

u jv j where u = u1,u2,… ,un and

v = v1,v2,… ,vn. Then u,v is an inner product.

Exercises.

1. Prove that in complex n-space, u,v = ∑
j=1

n

u j v j is an inner product.

[u = u1,u2,… ,un and v = v1,v2,… ,vn.
2. In the space of all continuous functions of period 2π, prove that

f,g = ∫
0

2π

ftgtdt

is an inner product.
3. Prove Proposition 2.1.

Definition. Suppose V is an inner product space and f ∈ V. The norm of f is the real number
|f| = f, f .

Proposition 2.2. |f,g| ≤ |f||g |.

Note. The inequality in Proposition 2.2 is the celebrated Cauchy-Schwarz-Buniakovsky Inequality.

Example. Let u = u1,u2,u3 and v = v1,v2,v3 be members of ordinary everyday Euclidean
3-space. Then, of course, u,v = u1v1 + u2v2 + u3v3 is the usual inner product, and we remember
from Mrs. Turner’s 3rd grade calculus that u,v = |u ||v|cosϕ, where ϕ is the angle between u and v.
In this case, the C − S − B inequality says simply that |cosϕ| ≤ 1.
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Proposition 2.3. The norm satisfies the following properties:
i |f| ≥ 0,
ii |αf| = |α ||f|,
iii |f + g | ≤ |f| + |g |.

Note. The inequality iii in Proposition 2.3 is called the Minkowski Inequality or sometimes the
triangle inequality.

Example. Again, in ordinary Euclidean 3-space with the usual inner product, |u | is the actual
honest-to-goodness measure-it-with-a-meter-stick length of the vector u, and Proposition 2.3 gives
obvious geometric facts. You can see why the Minkowski Inequality is frequently called the triangle
inequality.

Definition. Elements f and g in an inner product space are said to be orthogonal if f,g = 0.

Example. In real Euclidean 3-space with the usual inner product, u and v are orthogonal if and only if
the vectors are perpendicular.

Exercise.

4. Prove that if f,g = 0, then |f + g |2 = |f|2 + |g |2. (This is called the Pythagorean Theorem. Why?)

Definition. A sequence of elements ϕ1,ϕ2,… is called an orthogonal sequence if |ϕk | ≠ 0 for all
k, and ϕ i,ϕ j = 0 for all i ≠ j.

Theorem 2.4. Every orthogonal sequence is linearly independent.

Theorem 2.5. If ϕ1,ϕ2,… ,ϕn is an orthogonal base for a linear space V and f ∈ V, then

f = ∑
i=1

n

α iϕ i

where

α i =
f,ϕ i
ϕ i,ϕ i

.

Corollary 2.6. |f|2 = ∑
i=1

n

|a i |2.

Exercise.

5. Let V be the space of all real continuous functions defined on the interval −1,1, and let the inner
product f,g be defined by
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f,g = ∫
−1

1

fxgxdx.

a) Show that the collection B = 1,x, 3x2 − 1,5x3 − 3x is orthogonal.
b) Let W be the subspace of V spanned by B. Find the coordinates of 2x3 + x2 with respect to the base
B.

Theorem 2.7. Suppose H is a finite dimensional subspace of an inner product space V. Suppose in
addition that f ∈ V. Let ϕ1,ϕ2,… ,ϕn be an orthogonal base for H. Then there is exactly one
element g ∈ H such that

|f − g |2 ≤ |f − h |2 for all h ∈ H.

Moreover,

g = ∑
i=1

n

α iϕ i, where α i =
f,ϕ i
ϕ i,ϕ i

.

Corollary 2.8. f −∑
i=1

n

α iϕ i

2

=|f|2 −∑
i=1

n

|α i |2 |ϕ i |2

Definition. The function g in Theorem 2.6 is called the projection of f onto H, and is usually denoted
projf : ϕ1,ϕ2,… ,ϕn

Theorem 2.9. If h ∈ H, then f − projf : ϕ1,ϕ2,… ,ϕn,h = 0.

Example. Let V be the space of all continuous real functions defined on the interval −1,1 with the
inner product

f,g = ∫
−1

1

fxgxdx.

Let H be the subspace of V consisting of all polynomials of degree ≤ 2. Then it is easy to verify that
1,x, 3x2 − 1 is an orthogonal base for H. The projection of cos πx

2 onto H is then given by

g =
cos πx

2 , 1
1,1

1 +
cos πx

2 ,x
x,x

x +
cos πx

2 , 3x2 − 1

3x2 − 1,3x2 − 1
3x2 − 1.

Let’s do the calculations:

cos πx
2 , 1 = ∫

−1

1

cos πx
2 dx = 4

π ; cos πx
2 ,x = ∫

−1

1

xcos πx
2 dx = 0;

cos πx
2 , 3x2 − 1 = ∫

−1

1

3x2 − 1cos πx
2 dx = 8 π2−12

π3 ;

1,1 = ∫
−1

1

dx = 2; and 3x2 − 1,3x2 − 1 = ∫
−1

1

3x2 − 12dx = 8
5 .
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Thus,

gx = 2
π + 5 π2 − 12

π3 3x2 − 1.

According to Theorem 2.7, this is the quadratic that best fits cos πx
2 in the sense that it is the quadratic

that among all quadratics minimizes

∫
−1

1

cos πx
2

− px2dx.

Let’s plot both g and cos πx
2 on the same set of axes:
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Note the graphs are almost indistinguishable!

Theorem 2.10. Let u1,u2,… ,un be a base for the space H. Then an orthogonal base for H is
ϕ1,ϕ2,… ,ϕn, where

ϕ1 = u1,

ϕ2 = u2 − proju2 : ϕ1

ϕ3 = u3 − proju3 : ϕ1,ϕ2

⋮

ϕ i = u i − proju i : ϕ1,ϕ2,… ,ϕ i−1

⋮

ϕn = un − projun : ϕ1,ϕ2,… ,ϕn−1

Exercises.
6. Find the polynomial of degree≤ 3 that best fits cos πx

2 in the sense that among all such polynomials
px, it minimizes

∫
−1

1

cos πx
2

− px2dx.

[See Exercise 5.]
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7. In Euclidean 3-space, find the point in the plane 2x + y − 3z = 0 that is closest to the point 0,0,5.

8. Let V be the collection of all functions with period 2π with the inner product

f,g = ∫
−π

π

fxgxdx.

a) Verify that the collection C = sinx, sin2x, sin3x is orthogonal.

b) Let f be the periodic extension of


f x =

−1, for − π < x ≤ 0

1, for 0 < x ≤ π
,

and find the projection of f onto the space spanned by the collection C.
c) Draw the graph of f and the projection found in b) on the same axes.

Definition. An orthonormal sequence ϕ1,ϕ2,… in which |ϕ i |2 = 1 for each i is called an
orthonormal sequence.

Proposition 2.11. Suppose ϕ1,ϕ2,… is an orthonormal sequence. Then for αk = f,ϕk, the

sequence ∑
k=1

∞
|αk |2 converges, and

∑
k=1

∞

|αk |2 ≤ |f|2.

[This is the celebrated Bessel’s inequality.]

Corollary 2.12.
k→∞
lim αk = 0.

[This one is known as Riemann’s Lemma.]

Definition. A linearly independent sequence B = u1,u2,… of elements in an inner product space V
is called an approximating base for V if for every element f ∈ V, given  > 0 there is an element u of
the span of B so that |f − u | < .

Definition. A sequence fn in an inner product space is said to converge in the mean to f if
n→∞
lim

|fn − f|2 = 0.

Proposition 2.13. Suppose ϕ1,ϕ2,… is an orthonormal approximating base for V, and f ∈ V. Then
the series
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∑
k=1

∞

αkϕk

where αk = f,ϕk converges in the mean to f.
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