Chapter Two - Inner Product Spaces

Definition. Suppose V is a linear space. An **inner product** on V is a scalar valued function F from pairs of elements of V such that

i) $F(f,f) \ge 0.$ ii) $F(f,g) = \overline{F(g,f)},$ iii) $F(\alpha f,g) = \alpha F(f,g),$ iv) F(f+g,h) = F(f,h) + F(g,h).

Note. Where there is no danger of confusion, we shall write simply (f, g) for F(f, g).

Proposition 2.1. An inner product has the following properties: *i*) $(f, \alpha g) = \overline{\alpha}(f, g)$ *ii*) (f, g + h) = (f, g) + (f, h)

Example. In real Euclidean *n*-space, define $(u, v) = \sum_{j=1}^{n} u_j v_j$ where $u = (u_1, u_2, \dots, u_n)$ and $v = (v_1, v_2, \dots, v_n)$. Then (u, v) is an inner product.

Exercises.

1. Prove that in complex *n*-space, $(u, v) = \sum_{j=1}^{n} u_j \overline{v}_j$ is an inner product. [$u = (u_1, u_2, ..., u_n)$ and $v = (v_1, v_2, ..., v_n)$].

2. In the space of all continuous functions of period 2π , prove that

$$(f,g) = \int_{0}^{2\pi} f(t)\overline{g(t)}dt$$

is an inner product.

3. Prove Proposition 2.1.

Definition. Suppose V is an inner product space and $f \in V$. The norm of f is the real number $|f| = \sqrt{(f,f)}$.

Proposition 2.2. $|(f,g)| \le |f||g|$.

Note. The inequality in Proposition 2.2 is the celebrated Cauchy-Schwarz-Buniakovsky Inequality.

Example. Let $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ be members of ordinary everyday Euclidean 3-space. Then, of course, $(u, v) = u_1v_1 + u_2v_2 + u_3v_3$ is the usual inner product, and we remember from Mrs. Turner's 3^{rd} grade calculus that $(u, v) = |u||v|\cos\varphi$, where φ is the angle between u and v. In this case, the C - S - B inequality says simply that $|\cos\varphi| \le 1$.

Proposition 2.3. The norm satisfies the following properties:

i) $|f| \ge 0$, ii) $|\alpha f| = |\alpha||f|$, iii) $|f + g| \le |f| + |g|$.

Note. The inequality *iii*) in Proposition 2.3 is called the **Minkowski Inequality** or sometimes the **triangle inequality.**

Example. Again, in ordinary Euclidean 3-space with the usual inner product, |u| is the actual honest-to-goodness measure-it-with-a-meter-stick length of the vector u, and Proposition 2.3 gives obvious geometric facts. You can see why the Minkowski Inequality is frequently called the triangle inequality.

Definition. Elements f and g in an inner product space are said to be **orthogonal** if (f, g) = 0.

Example. In real Euclidean 3-space with the usual inner product, u and v are orthogonal if and only if the vectors are perpendicular.

Exercise.

4. Prove that if (f,g) = 0, then $|f+g|^2 = |f|^2 + |g|^2$. (This is called the **Pythagorean Theorem**. Why?)

Definition. A sequence of elements $\{\varphi_1, \varphi_2, ...\}$ is called an **orthogonal sequence** if $|\varphi_k| \neq 0$ for all k, and $(\varphi_i, \varphi_j) = 0$ for all $i \neq j$.

Theorem 2.4. Every orthogonal sequence is linearly independent.

Theorem 2.5. If $\{\varphi_1, \varphi_2, \dots, \varphi_n\}$ is an orthogonal base for a linear space **V** and $f \in \mathbf{V}$, then

$$f = \sum_{i=1}^{n} \alpha_i \varphi_i$$

where

$$\alpha_i = \frac{(f, \varphi_i)}{(\varphi_i, \varphi_i)}.$$

Corollary 2.6.
$$|f|^2 = \sum_{i=1}^n |a_i|^2$$
.

Exercise.

5. Let **V** be the space of all real continuous functions defined on the interval [-1, 1], and let the inner product (f, g) be defined by

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx.$$

a) Show that the collection $B = \{1, x, 3x^2 - 1, 5x^3 - 3x\}$ is orthogonal.

b) Let **W** be the subspace of **V** spanned by *B*. Find the coordinates of $2x^3 + x^2$ with respect to the base *B*.

Theorem 2.7. Suppose **H** is a finite dimensional subspace of an inner product space **V**. Suppose in addition that $f \in \mathbf{V}$. Let $\{\varphi_1, \varphi_2, \dots, \varphi_n\}$ be an orthogonal base for **H**. Then there is exactly one element $g \in \mathbf{H}$ such that

$$|f-g|^2 \leq |f-h|^2$$
 for all $h \in \mathbf{H}$.

Moreover,

$$g = \sum_{i=1}^{n} \alpha_i \varphi_i$$
, where $\alpha_i = \frac{(f, \varphi_i)}{(\varphi_i, \varphi_i)}$.

Corollary 2.8. $\left| f - \sum_{i=1}^{n} \alpha_i \varphi_i \right|^2 = |f|^2 - \sum_{i=1}^{n} |\alpha_i|^2 |\varphi_i|^2$

Definition. The function *g* in Theorem 2.6 is called the **projection** of *f* onto **H**, and is usually denoted $proj(f : \varphi_1, \varphi_2, \dots, \varphi_n)$

Theorem 2.9. If $h \in \mathbf{H}$, then $(f - proj(f : \varphi_1, \varphi_2, \dots, \varphi_n), h) = 0$.

Example. Let V be the space of all continuous real functions defined on the interval [-1,1] with the inner product

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx$$

Let **H** be the subspace of **V** consisting of all polynomials of degree ≤ 2 . Then it is easy to verify that $\{1, x, 3x^2 - 1\}$ is an orthogonal base for **H**. The projection of $\cos \frac{\pi x}{2}$ onto **H** is then given by

$$g = \frac{\left(\cos\frac{\pi x}{2},1\right)}{(1,1)}1 + \frac{\left(\cos\frac{\pi x}{2},x\right)}{(x,x)}x + \frac{\left(\cos\frac{\pi x}{2},3x^2-1\right)}{(3x^2-1,3x^2-1)}(3x^2-1).$$

Let's do the calculations:

$$(\cos \frac{\pi x}{2}, 1) = \int_{-1}^{1} \cos \frac{\pi x}{2} dx = \frac{4}{\pi}; \qquad (\cos \frac{\pi x}{2}, x) = \int_{-1}^{1} x \cos \frac{\pi x}{2} dx = 0;$$

$$(\cos \frac{\pi x}{2}, 3x^{2} - 1) = \int_{-1}^{1} (3x^{2} - 1) \cos \frac{\pi x}{2} dx = 8\frac{\pi^{2} - 12}{\pi^{3}};$$

$$(1, 1) = \int_{-1}^{1} dx = 2; \text{ and } (3x^{2} - 1, 3x^{2} - 1) = \int_{-1}^{1} (3x^{2} - 1)^{2} dx = \frac{8}{5}.$$

Thus,

$$g(x) = \frac{2}{\pi} + 5 \frac{\pi^2 - 12}{\pi^3} (3x^2 - 1).$$

According to Theorem 2.7, this is the quadratic that best fits $\cos \frac{\pi x}{2}$ in the sense that it is the quadratic that among all quadratics minimizes

$$\int_{-1}^{1} (\cos \frac{\pi x}{2} - p(x))^2 dx$$

Let's plot both g and $\cos \frac{\pi x}{2}$ on the same set of axes:

Note the graphs are almost indistinguishable!

Theorem 2.10. Let $\{u_1, u_2, ..., u_n\}$ be a base for the space **H**. Then an orthogonal base for **H** is $\{\varphi_1, \varphi_2, ..., \varphi_n\}$, where

$$\varphi_1 = u_1,$$

$$\varphi_2 = u_2 - proj(u_2 : \varphi_1)$$

$$\varphi_3 = u_3 - proj(u_3 : \varphi_1, \varphi_2)$$

$$\vdots$$

$$\varphi_i = u_i - proj(u_i : \varphi_1, \varphi_2, \dots, \varphi_{i-1})$$

$$\vdots$$

$$\varphi_n = u_n - proj(u_n : \varphi_1, \varphi_2, \dots, \varphi_{n-1})$$

Exercises.

6. Find the polynomial of degree ≤ 3 that best fits $\cos \frac{\pi x}{2}$ in the sense that among all such polynomials p(x), it minimizes

$$\int_{-1}^{1} (\cos \frac{\pi x}{2} - p(x))^2 dx.$$

[See Exercise 5.]

7. In Euclidean 3-space, find the point in the plane 2x + y - 3z = 0 that is closest to the point (0, 0, 5).

8. Let V be the collection of all functions with period 2π with the inner product

$$(f,g) = \int_{-\pi}^{\pi} f(x)g(x)dx.$$

- **a**) Verify that the collection $C = \{\sin x, \sin 2x, \sin 3x\}$ is orthogonal.
- **b**) Let *f* be the periodic extension of

$$\hat{f}(x) = \begin{cases} -1, \text{ for } -\pi < x \le 0\\ 1, \text{ for } 0 < x \le \pi \end{cases},$$

and find the projection of f onto the space spanned by the collection C.

c) Draw the graph of f and the projection found in b) on the same axes.

Definition. An orthonormal sequence $\{\varphi_1, \varphi_2, ...\}$ in which $|\varphi_i|^2 = 1$ for each *i* is called an **orthonormal** sequence.

Proposition 2.11. Suppose $\{\varphi_1, \varphi_2, ...\}$ is an orthonormal sequence. Then for $\alpha_k = (f, \varphi_k)$, the sequence $\sum_{k=1}^{\infty} |\alpha_k|^2$ converges, and

$$\sum_{k=1}^{\infty} |\alpha_k|^2 \leq |f|^2.$$

[This is the celebrated **Bessel's inequality**.]

Corollary 2.12. $\lim_{k\to\infty} \alpha_k = 0.$

[This one is known as Riemann's Lemma.]

Definition. A linearly independent sequence $B = \{u_1, u_2, ...\}$ of elements in an inner product space V is called an **approximating base** for V if for every element $f \in V$, given $\varepsilon > 0$ there is an element u of the span of B so that $|f - u| < \varepsilon$.

Definition. A sequence (f_n) in an inner product space is said to **converge in the mean** to f if $\lim_{n \to \infty} |f_n - f|^2 = 0$.

Proposition 2.13. Suppose $\{\varphi_1, \varphi_2, ...\}$ is an orthonormal approximating base for **V**, and $f \in \mathbf{V}$. Then the series

$$\sum_{k=1}^{\infty} \alpha_k \varphi_k$$

where $\alpha_k = (f, \varphi_k)$ converges in the mean to *f*.