
Chapter Four - Differential Equations I

Consider the problem of finding ux, t for 0 ≤ x ≤ π and t ≥ 0, such that uxxx, t − u tx, t = 0,
subject to the conditions u0, t = uπ, t = 0, and ux, 0 = fx. This partial differential equation is an
example of the celebrated heat equation. A physical model for the problem here is the temperature
distribution at time t in a rod of length π in which the ends are constantly held at 0o, and the initial
temperature distribution ux, 0 is specified to be fx.

Recall that for a linear function (or ”operator”) in finite dimensional spaces, there are times when
we can find a base for our space with respect to which the operator becomes very simple. Specifically,
if the linear operator is represented by the matrix A, if there is an orthogonal base consisting of
elements v1,v2,… ,vn such that Av j = μjv j, then for any element x = a1v1 + a2v2 +…+anvn, we
have Ax = μ1a1v1 + μ2a2v2 +…+μnanvn The numbers μj are usually called eigenvalues and the
corresponding vectors v j are called eigenvectors, or eigenfunctions.Now, what does this have to do
with our problem at hand? Well, here we seek something similar in the infinite dimensional case for the
linear operator Lϕ = ϕ ′′ on the space of all twice differentiable functions such that ϕ0 = ϕπ = 0.
Our original partial differential equation can then be turned into a simple easy to solve collection of
ordinary differential equations. Let’s see what we’re talking about.

Consider the problem of finding nonzero ϕ such that Lϕ = μϕ, where L is the linear operator on
the space of twice differentiable functions on 0,π which vanish at 0 and π defined by Lϕ = ϕ ′′. We
are thus faced with the boundary value problem

ϕ ′′ − μϕ = 0,

ϕ0 = ϕπ = 0

We recall from Mrs. Turner’s calculus class that any solution of this equation looks like

ϕx = Aex μ + Be−x μ .

If μ is real (in other words, if μ ≥ 0, then ϕ0 = ϕπ = 0 gives us the two equations

A + B = 0, and

Aeπ μ + Be−π μ = 0.

Or,

Aeπ μ − e−π μ  = 2A sinhπ μ = 0.

This can happen only if A = 0, or sinhπ μ = 0. If A = 0, then B = 0 also, and we have no nonzero
solution. If sinhπ μ = 0, then it must be true that π μ = 0, or, μ = 0. This also results in only the
zero solution. We see then that for μ > 0, there are no nonzero solutions to our problem. So what if
μ < 0? Let’s see. First, for convenience and to remind us that μ < 0, let μ = −λ2. Then any solution of
the differential equation is
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ϕx = Acosλx + B sinλx.

The boundary conditions become

ϕ0 = A = 0, and

ϕπ = B sinλπ = 0.

Again, B = 0 results in only the zero solution, and so we must have sinλπ = 0. Thus, λπ = nπ, where
n = ±1,±2,… . (Note that n = 0 does not give a nonzero solution to our differential equation.) We
have now found eigenvalues μn = −n2, and corresponding eigenfunctions ϕnx = sinnx.We have
found an infinite collection of eigenfunctions, and from our vast knowledge of Fourier series, we know

the collection is orthogonal with respect to the inner product f,g = ∫
0

π

fxgxdx.

Now back to our original partial differential equation. We think first of the variable t are a

parameter and write ux, t = ∑
n=1

∞
αnt sinnx. The equation becomes

uxx − u t = ∑
n=1

∞

−n2αnt sinnx −∑
n=1

∞

αn
′ t sinnx = 0, or

= ∑
n=1

∞

−n2αnt − αn
′ t sinnx = 0.

Now we need to have −n2αnt − αn
′ t = 0, or

αn
′ t = −n2αnt

The solution to this is easy:

αnt = ane−n2t, where an is any constant.

Putting this back in the expression for u gives us

ux, t = ∑
n=1

∞

ane−n2t sinnx.

What are the constants an? Simple! They come from the initial condition ux, 0 = fx:
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ux, 0 = ∑
n=1

∞

an sinnx = fx,

and we see that the an are simply the Fourier sine coefficients for f:

an = 2
π ∫

0

π

fx sinnx.

Example. For the problem

uxx − u t = 0, 0 ≤ x ≤ π, t ≥ 0;

u0, t = uπ, t = 0,

ux, 0 = fx, where

fx =
x x < π/2

π − x π/2 < x

Then we have

an = 2
π ∫

0

π

fx sinnx = 4
π

sin 1
2 nπ

n2

Letting n = 2k − 1 gives us

ux,y = 4
π ∑

k=1

∞
−1k+1

2k − 12 e−2k−12t sin2k − 1x

Let’s draw ux, t for a sequence of values of t starting at t = 0:
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Looks like what one would expect!
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Exercises
1. Solve

uxx − u t = 0, 0 ≤ x ≤ π, t ≥ 0

u0, t = uπ, t = 0

ux, 0 = xπ − x,

and sketch the graph of ux, t for a few values of t.

What do we do if the boundary conditions are not homogeneous? In other words, suppose that
instead of specifying that u0, t = uπ, t = 0, we want to have

u0, t = At, and uπ, t = Bt.

The answer is remarkably simple. We define vx, t = At1 − x/π + Btx, and let

wx, t = ux, t − vx, t.

Then

wxx − wt = uxx − vxx − u t − v t = v t.

Also,

w0, t = u0, t − v0, t = At − At = 0, and

wπ, t = uπ, t − vπ, t = Bt − Bt = 0.

Also,

wx, 0 = ux, 0 − vx, 0 = fx − vx, 0 = gx

We have thus turned our problem with nonhomogeneous boundary conditions into one with
homogeneous boundary conditions but with a nonzero ”source term” :

wxx − wt = v t

We look at an example of how this works. Just as before, we let wx, t = ∑
n=1

∞
αnt sinnx:

uxx − u t = ∑
n=1

∞

−n2αnt sinnx −∑
n=1

∞

αn
′ t sinnx = v t = A ′t1 − x/π + B ′tx.
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∑
n=1

∞

−n2αnt − αn
′ t sinnx = ∑

n=1

∞

bnt sinx, or

∑
n=1

∞

−n2αnt − αn
′ t − bnt sinnx = 0

Again, we have a differential equation

αn
′ t + n2αnt = bnt

What are the functions bnt? Well, we want

v tx, t = A ′t1 − x/π + B ′tx = ∑
n=1

∞

bnt sinnx.

Or,

A ′t + B ′t − A ′t/πx = ∑
n=1

∞

bnt sinnx

The Fourier sine series for the function 1 is

1 = 2
π ∑

n=1

∞
1 − cosnπ

n sinnx,

and for x is

x = 2
π ∑

n=1

∞
−π
n cosnπ sinnx

Thus,

A ′t + B ′t − A ′t/πx = 2
π ∑

n=1

∞

A ′t 1 − cosnπ
n + B ′t − A ′t −πn cosnπ sinnx.

Hence,

bnt = A ′t 1 − cosnπ
n + B ′t − A ′t −πn cosnπ

Example. Consider the problem
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uxx − u t = 0, 0 ≤ x ≤ π, t ≥ 0

u0, t = 0, uπ, t = sin t

ux, 0 = 0

Let vx, t = x
π sin t, and so we have wx, t = ux, t − x

π sin t. Then

wxx − wt = uxx − u t + x
π cos t = x

π cos t

w0, t = u0, t = 0, and wπ, t = uπ, t − sin t = sin t − sin t = 0.

wx, 0 = ux, 0 = 0

As usual, wx, t = ∑
n=1

∞
αnt sinnx:

wxx − wt = ∑
n=1

∞

−n2αnt − αn
′ t sinnx = x

π cos t

Next, I hope it is clear why we need the Fourier sine series for x.

x = ∑
n=1

∞

bn sinnx,

where bn = 2
π ∫

0

π

x sinnxdx = 2
π

π−1n+1

n = 2 −1n+1

n

Thus,

∑
n=1

∞

−n2αnt − αn
′ t sinnx = x

π cos t = ∑
n=1

∞

2 −1n+1

πn cos t sinnx,

Or, making one big series:

∑
n=1

∞

−n2αnt − αn
′ t + 2 −1n

πn cos t sinnx = 0.

Now we must cope with the differential equation

− n2αnt − αn
′ t + 2 −1n

πn cos t = 0, or

αn
′ t + n2αnt = 2 −1n

πn cos t.
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To solve this, multiply by the integrating factor en2t :

en2tαn
′ t + n2αnt = 2 −1n

πn en2t cos t, or

d
dt

en2tαnt = 2 −1n

πn en2t cos t.

Thus,

en2tαnt = 2 −1n

πn
n2

n4 + 1
en2t cos t + 1

n4 + 1
en2t sin t + An,

and so

αnt = 2 −1n

πnn4 + 1
n2 cos t + sin t + Ane−n2t.

We’re almost there:

wx, t = ∑
n=1

∞

αnt sinnx

= ∑
n=1

∞
2−1n

πnn4 + 1
n2 cos t + sin t + Ane−n2t sinnx

Finally, the initial condition:

wx, 0 = ∑
n=1

∞
2−1n

πnn4 + 1
n2  + An sinnx = 0

Hence,

An = − 2n2−1n

πnn4 + 1
,

and the whole gory mess is

wx, t = 2
π ∑

n=1

∞
−1n

nn4 + 1
n2cos t − e−n2t + sin t sinnx.

At last!
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ux, t = wx, t + x
π sin t, or

ux, t = 2
π ∑

n=1

∞
−1n

nn4 + 1
n2cos t − e−n2t + sin t sinnx + x

π sin t

Let’s take a look at some pictures. First, let’s plot ux, t for a sequence of values of t between 0 and
π/2 :
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Take a look now at some pictures for t between π/2 and 3π/2 :
ux, 12π/8
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No surprises, I hope.

Exercises
2. Solve

uxx − u t = 0, 0 ≤ x ≤ π, t ≥ 0

u0, t = 1, uπ, t = 10

ux, 0 = 0.

Sketch the solution for a few values of t.
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3. Solve

uxx − u t = 0, 0 ≤ x ≤ π, t ≥ 0

u0, t = 0, uπ, t = t

ux, 0 = 0.

Sketch the solution for a few values of t.

Observation. It should be clear now how to handle a problem in which there is a source term:
uxx − u t = Fx, t, etc.

Exercise

4. Solve

uxx − u t = t sinx, 0 ≤ x ≤ π, t ≥ 0

u0, t = 0, uπ, t = 0

ux, 0 = 0.
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