Chapter Five - Eigenvalues, Eigenfunctions, and All That

The partial differential equation methods described in the previous chapter is a specia case of a
more general setting in which we have an equation of the form

L 1(Qu(x,t) + Lo(Hu(x,t) = F(x,t)

forx e D andt > 0, in which u is specified on the boundary of D as areinitid conditionsatt = 0. We
assumethat L ;(x) isalinear differential operator in x and L ,(t) isalinear differential operator int.

In the previous chapter, L1(X)o(X) = ¢"(x), and we were fortunate that this operator had an
infinite orthogonal collection of eigenfunctions which approximate functions in a nice way. We shall
see what happensin amore general setting. First abit of linear algebrareview.

Definition. Suppose V is a linear space together with an inner product. A linear operator L : V - V
such that (Lf,g) = (f,Lg) for dl f,g € Vissaid to be self-adjoint.

Let V be a linear space of nice functions defined on an interval a < x < b with the inner product
b

(f,9) = [f(x)g(x)dx. Define the linear operator L by

Lo = [P0 52 |+ 4000,

We assume that p and g are real and continuous and that p is continuoudly differentiable and positive.
Such an operator is called a Sturm-Liouville operator.

Definition. Suppose r is a real continuous and positive function on a < x < b.A scalar p such that
Lo = —ure for some nonzero ¢ € V is cdled an eigenvalue of L, and the function ¢ is an
eigenfunction.

For reasons that will soon be clear, we would very much like to have our linear operator L be
sdlf-adjoint. Thus, we want (Lf,g) = (f,Lg) for al f and g in the space V. Let’ s compute:

b
(Lf,9) - (f,Lg) = [ LFC0G00 - fGOT0I Jax

b
- I{%[p(x)% }@ +q()f()g00) —
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= p(b)g(b)f'(b) - f(b)g'(b) - p(a)| g@F (@) - f(@)g (@)(@) -
In other words, L will be self-adjoint if we choose V to be alinear space of functions such that

p(b)[ gD (b) - f(b)g'(b) ] = p(a)[ 9(@)f' (@) - f(a)g'(a)(a) |.

"

Examples. The operator Lo = ¢" is a Sturm-Liouville operator on the interval a < x < b, with
p(x) = 1 and q(x) = 0. The self-adjoint boundary conditions then become

g(b)f'(b) - f(b)g'(b) = g(@)f'(a) - f(a)g'(@)(a)

Thus, if we choose V to be the space of functions such that ¢(a) = ¢(b) = 0, the operator L is
self-adjoint.

So why should we care about self-adjoint operators? Let’s see.
Proposition 1. Every eigenvalue of a self-adjoint operator isredl.

Proof: Suppose Ly = —ure for some nonzero ¢. Then (Le,¢) = (p,Lp) because L is
self-adjoint, and this becomes (—uro, @) = (¢,—ure), or u(re,¢) = T(e,re). In other words,

b b
[ rOolp (9 e = 71 [ r(lp00 o

Theintegral isnot zero, and so we have u = Ti.

Proposition 2. Eigenfunctions corresponding to different eigenvalues of a self-adjoint operator L are
orthogonal with respect to the inner product

b

(o) = (f,9) = (f.rg) = [ rOOf9TOIax.

a

Proof: Suppose Lo = —ure and LE = —vré for u # v. Again, from the fact that L is self-adjoint,
we know that (Lo, &) = (¢,LE). Thus, (—ure,&) = (e,—vré).From the previous proposition we know



that 4 and & arered. Thus,

uro,&) = vip,ré), or
(u—-v)(p,6)r = 0.

But u # v and so it must be true that (¢, &), = 0.

Nothing we have done guarantees the existence of eigenvalues of L. There are, in fact, an infinite
number of them, giving an infinite orthogonal set of eigenfunctions. A proof is too much for these
notes. The celebrated Sturm-Liouville Theorem says even more. It says that every nice function f can
be expanded in a series

f= Z an®n
n=1

of the eigenfunctions ¢, and this series convergesin the mean to f.

Example. Consider the problem

Uy — Ut =0, forO< x< randt >0
u(0,t) = 0O and u¢(r,t) =0
ux,0) = f(x)

In solving this problem, | hope it is clear why we begin with the eigenvalue problem

"

¢" = —up
¢(0) = 0,¢'(r) = 0.

Note this is an example of the Sturm-Liouville problem we have just discussed, so we know what to
expect. First, we know that we must u > 0 in order to have nonzero solutions to the problem. To
remind us of that, let u = A2. Then

o(X) = ACosAx + Bsinax,
and the boundary conditions become

p(0)=A=0
and



¢'(0) = ABcosAr = 0.

If A or B are zero, then ¢ = 0, so it must be true that cosAz = 0. Thus Az must be an odd multiple of
ml2 .

An=@n-1DL = -1y forn=123,...
2 2
Our eigenvalue arethus i, = 12 = (n— %)Z,and he corresponding eigenfunctions are
on(X) = sin(n— %)x

Continuing, let u(x,t) = >_ an(t) SinA,x. From here on, things look familiar.
n=1

UX)( - Ut = Z[_ﬂnan(t) - a%(t)]snlnx = O
n=1

Asusual,
— nan(t) —ay(t) = 0

tellsus that an(t) = ane ™t = a,e*#, and so

o0
ux,t) = D ape s,
n=1

The constants a,, are determined from the initia condition u(x,0) = f(x) :

ux,0) = f(x) = iansin/lnx.

n=1
Thus,

_ (f,SNA,X)
(SNApX, SINAnX)

2 [ () sinindx
0



Exercises
1. Find all eigenvalues and eigenfunctions for

"

¢" = —up,
¢(0) = ¢'(r) = 0.

2. Find dl eigenvalues and elgenfunctions:

"

¢ = —up,
¢(0) = o(n)
¢'(0) = ¢'(n)

Let n be anon-negative integer, and consider the Sturm-Liouville problem

d [xd—q)] - nTzq)(x) = -A%Xp(x), 0 < x<b

dx |7 dx
¢(c) = 0.

Note that this operator does not quite fit our definitions. The coefficient q(x) = —”—X2 of ¢ isnot nice at
the left end point of the interval under consideration and p(x) = X is zero at the left end point of the
interval. This is what is known as a singular Sturm-Liouville problem. If, however, we consider
functions that, together with their derivatives, are reasonably well-behave at the left end point a = 0,
then our self-adjoint boundary conditions

p(b) [ g(b)f'(b) - f(b)g'(b) | = p(a)[ g(@f (a) - f(a)g (a)(a) |
become
c[ gb)f'(b) - f(b)g'(b) ] = O,

and are satisfied by functionsin the space of those nice functions that vanish at x = b.
The equation

d[y90 7 _n? o_ ;2
dx[xdx] < P(X) = —AXp(X), or

Xz(p// +X(p’ _ nZ(P +/12X2(p =0

is the world-famous Bessel’s Equation. We shall seek solutions by means of the Frobenius method.
That is, assume a solution ¢ of the form



o0
¢ = X" cxk, co # 0.
k=0

Then
Q= chxowk’
k=0
o' =D (a+Koxk,
k=0
0" =D (a+K)(a+k-1)cxe2,
k=0
and we have
x20" +Xp' —n%p + A%X%¢p = Z[(a +K)(a+k—-1) + (o +K) — n?]cex@* +
k=0
iAZCka—I@Z
k=0
Writing Y- A2cix@ 2 = 3" 221 ,x**K gives us
k0 k=2

Xz(p// n X(Pl _ nz(p + /lzxz(p _ Z[(a + k)2 _ n2]ckxa+k + ZAZCK—ZXLHK
k=0 k=2

= (a? — n?)coX* + [(a + 1)% — n?]c x>t +

Z{[(a +K)2 — n2]ck + A2Ckp b XK,
k=0

In order for the differential equation to be satisfied, each of the coefficients of the powers of x must be
zero:

(@?2-n?)co =0
[(@+1)2-n?]cy =0
[(a + k)2 —n?]Jck + A%ck2 = 0, fork = 2,3,4, ...

In the first equation, co + 0 and so it must be true that a2 — n? = 0, givingusa = n, or —n. Let’s start
with @ = n. The remainder of the equations become



(2n+1)c; =0
k(2n+Kk)ck + A%ck2 = 0, fork = 2,3,4, ....

Thus, c; = ¢3 = Cs =...= 0,and
Ck = ( /lk)Ckz,fOI'k 2,3,4,.
Letting k = 2mresultsin
_ A2 _ —A?
2 = 2mzn + 2m) 2™ T 22min g my) 2D
Then
Y (=1)™MA2"n!
Com = —5—>——¢C =t
M 22min+m) 2D T 22mitn e myl 0

where ¢y is any constant. For the sake of neatness, choose co = 2 (4 ) ". Then

B (_1)m/12mn! Co = (%)n (_1)m (%)Zm’

Cam = 22"mi(n + m)! mi(n + m)!

and our solutions, at last,

o(X) = (%) " ; %(%) 2mXZrT‘rm,ol’

0= (4) % mtmr (3)”

mi(n+ m)!
The function
(X" i (M X 2m
1 =(5) 2 mi(n+m)! (3)
m=0
isthe Bessd function of thefirst kind of order n. Our solution is thus

o(X) = Jn(AX).



A second linearly independent solution is found reducing the order of the original equation. It turns out
not to be niceat x = 0, and so we have solutions p(x) = AJ,(AX). The boundary condition is thus

Jn(Ab) = 0.

It is known that J, has an infinite number of non-negative zeros. These and al sorts of other
information about Bessel functions can be found in most handbooks or by means of most computer
algebra systems; e.g., Maple or Mathematica. Here are some pictures.

First, Jo :

0.8
0.6
0.4

0.2

-0.27

-0.47

Now hereare J1,J,,and Js :

8 \W /12 14 MS 20

0.67
0.47]

0

-0.27

-0.41

-0.67

2\76
T T
2 6

It is clear then that our eigenvalues are A2y, With Anm = Zam/b, where zqm is the m zero of J,.
Hereis ashort table of some of these values:

m
1
2
3
4

n=20
2.405
5.520
8.654

n=1 n=2 n=3
3.832 5135 6.379
7.016 8.417 9.760
10.173 11.620 13.017

11.792 13.323 14.796 16.224

The corresponding eigenfunctions are, of course, J,(AnmX). Note there is a non-constant weight
function here, so our orthogonality becomes



b
J.xJn(/’Lnkx)Jn(/’me)dx =0, fork = I.

0

Example. Consider the problem

0 (yOuY _\. =
ax(xax) Uur=0,0<x<L, t>0

ulL,t)=0
u(x,0) = f(x), ux(x,0) = g(x).

The solution u gives the displacement of a hanging chain of length L :

— =0

It should be clear by now why we are interested in the eigenvalue problem

d de 2
dx( dx) —A%¢

o(L) = 0, and ¢(0) nice.

Thisis tantalizingly close to Bessel’s equation of order zero. We could use the method of Frobenius to
find solutions, etc. Instead, let's make a change of variable. Let z= 2/X, or x = z°/4.Define
¢(2) = ¢(z%/4). Then,

W _zdp o do _pdp
dz 2 dx’ dx Z dz’

Our differential equation thus becomes

di(xd—q)) + A% = 21(2—22%) + 2% =0, 0r

d Zdz\ 4 Z dz
d (,99 2, _
dz(zdz)+l z=0.



Now we have Bessd’s equation with n = 0. The solution is Jo(12) = Jo(24/X).The boundary
condition p(L) = 0isJo(244/L) = 0, and so we have the eigenvaues

Am = 20,
m ZJE
where z,, isthem" zero of Jo.
We set
et = D am)IoimyX).
m=1
Then

% (x%) Uy = ;(—/’Lﬁ]am(t) — alh(©)Jo(2AmyX) = 0.

Thisgivesus am(t) = anCoSAmt + bmSnAnt. Thus,
UX,t) = D (amCOSAmt + D SN Amt)Jo(2AmyX)
m=1

Use theinitial conditionsto find the constants ay,, b, :

u(x,0) = iamJo(Z/’Lmﬁ) = f(x).
m=1

Hence,
L
[f00)J0(2AmyX)dx

am = 2 .

L
[[30(2AmyX)]%dx
0

Also,

U(x,0) = D bndmdo(2AmyX),

m=1

and so,

10



L
[ 90 30(22m /X )l
by = -2

L
Am [[J0(2AmyX)]dX
0

Exercise
3. Find the first four terms of the seriesfor uincaseL = 1, f(x) = x(1 - Xx), and g(x) = 0.
Draw some pictures of your approximation for different values of t.
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