
Chapter Six - Laplace’s Equation

Laplace’s equation, or the potential equation, is ∇2u = 0, where the operator ∇2 is the Laplacian,
the divergence of the gradient. In rectangular coordinates in two dimensions,

∇2u = ∂2u
∂x2 + ∂2u

∂y2

We are interested in the problem of finding u on a region R such that ∇2u = 0 in the interior of R and u
is some specified function on the boundary of R. This is called the Dirichlet problem. We begin with a
very special example:

∇2u = ∂2u
∂x2 + ∂2u

∂y2 = 0, 0 < x,y < π

u0,y = uπ,y = 0, and

ux, 0 = fx, ux,π = gx.

From all that has gone before, it should be clear why we set

ux,y = ∑
n=1

∞

αny sinnx.

This gives us

∑
n=1

∞

−n2αny + αn
′′y sinnx = 0,

which leads to the ordinary differential equation

− n2αny + αn
′′y = 0.

From this, we conclude that

αny = an coshny + bn sinhny.

Thus,

ux,y = ∑
n=1

∞

an coshny + bn sinhny sinnx.
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The remaining boundary conditions lead to

ux, 0 = ∑
n=1

∞

an sinnx = fx, and

ux,π = ∑
n=1

∞

an coshnπ + bn sinhnπ sinnx = gx.

Hence we need

an = 2
π ∫

0

π

fx sinnxdx, and

an coshnπ + bn sinhnπ = 2
π ∫

0

π

gxdx, or

bn = 1
sinhnπ

2
π ∫

0

π

gxdx − an coshnπ

Example. Consider the problem with fx = xπ − x and gx = 0. Then

an = 2
π ∫

0

π

xπ − x sinnxdx

= 4
πn3 1 + −1n+1 

bn = −an
coshnπ
sinhnπ

.

Now we have

ux,y = ∑
n=1

∞
an

sinhnπ
coshny sinhnπ − sinhnycoshnπ sinnx

= ∑
n=1

∞
an

sinhnπ
sinhnπ − y sinnx.

We can simplify things a bit by observing that an = 0 for n even. Let n = 2k − 1.Then

a2k−1 = 8
π2k − 13 ,
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and we have

ux,y = 8
π ∑

k=1

∞
sinh2k − 1π − y
2k − 13 sinh2k − 1π

sin2k − 1x.

Here is a picture:
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Exercise
1. Show that the solution to the original problem can be written

ux,y = ∑
n=1

∞
An sinhnπ − y + Bn sinhny

sinhnπ
sinnx, where

An = 2
π ∫

0

π

fx sinnxdx, and Bn = 2
π ∫

0

π

gx sinnxdx

2. Find the solution for fx = 0 and gx = xπ − x.

Now, what do we do about more realistic boundary conditions;viz, those in which u does not have
to be zero on x = 0 and x = π? The answer is rather simple. Suppose we want to have ux, 0 = fx,
ux,π = gx, u0,y = hy, and uπ,y = ky. We first find the solution of the problem in case
hy = ky = 0. This we have already done. The solution vx,y is given above. Next, we find the
solution wx,y of the problem with fx = gx = 0, and hy and ky given. Note there is really
nothing new here. This is just the previous problem with x and y interchanged−we simply turn our
heads. The solution u of the general problem is then ux,y = vx,y + wx,y.

Example. Let’s solve the general problem with fx = x2, gx = 0, ky = π − y2, and
hy = 0.First, v.

vx,y = ∑
n=1

∞
An sinhnπ − y

sinhnπ
sinnx, where
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An = 2
π ∫

0

π

x2 sinnxdx = 2
πn3 −1n+1n2π2 + 2−1n − 1.

Or,

vx,y = 2
π ∑

n=1

40
−1n+1n2π2 + 2−1n − 1

n3 sinhnπ
sinhnπ − y sinnx

Next,

wx,y = ∑
n=1

∞
Bn sinhnx

sinhnπ
sinny, where

Bn = 2
π ∫

0

π

π − y2 sinnydy = 2
π

2−1n − 1 + n2π2

n3

:
Or,

wx,y = 2
π ∑

n=1

∞

2−1n − 1 + n2π2 
sinhnx sinny

n3 sinhnπ

At last,

ux,y = vx,y + wx,y

Here are a couple of views of the graph of u.
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Note that it looks fairly nice, except at the corner 0,π of the region. Our problem came with nice
continuous boundary conditions, but we then split the problem into two problems each of which has
discontinuous boundary conditions. Thus both v and w, and hence u, are zero at this corner. We are
seeing the nasty behavior of the trigonometric series at discontinuities (Gibb’s phenomenon).Could this
have been avoided? Yes indeed−we simply replace u by U = u − V, where the function v is chosen to
insure that U is zero at all four corners of the rectangular region.

How do we find such a V? Easy. We let Vx,y = a1 + a2x + a3y + a4xy, where the a i are
determined so that V = U at the corners. Let’s see how this works with the problem we just completed.
In this case, we want

V0,0 = a1 = 0,

V0,π = a3π = 0,

Vπ,π = a2π + a4π2 = 0, and

Vπ, 0 = a2π = π2.

I hope it is clear that Vx,y = πx − xy = xπ − y does the job. We thus consider the problem

∇2U = ∇2u − V = ∇2u = 0,

Ux, 0 = ux, 0 − Vx, 0 = x2 − xπ

Uπ,y = π − y2 − ππ − y = −yπ − y,

U0,y = 0 − 0 = 0, and Ux,π = 0 − 0.

Study the solution just given and observe U has the same form as the solution to that problem,
except we need

An = 2
π ∫

0

π

xx − π sinnxdx = 4
πn3 −1n − 1, and

Bn = 2
π ∫

0

π

yy − π sinnydy = 4
πn3 −1n − 1
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Thus,

vx,y = 4
π ∑

n=1

∞

−1n − 1 sinhnπ − y
n3 sinhnπ

sinnx, and

wx,y = 4
π ∑

n=1

∞

−1n − 1 sinhnx
n3 sinhnπ

sinny

Then

Ux,y = vx,y + wx,y

= 4
π ∑

n=1

∞
−1n − 1
n3 sinhnπ

sinhnπ − y sinnx + sinhnx sinny.

Finally,

ux,y = Ux,y + Vx,y = Ux,y + xπ − y.

Or,

ux,y = xπ − y + 4
π ∑

n=1

∞
−1n − 1
n3 sinhnπ

sinhnπ − y sinnx + sinhnx sinny.

This is, of course, precisely the same as the solution found before, but this one should have better
convergence properties. Let’s take a look at a picture of the first 30 terms of this series:
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This one is absolutely gorgeous at the corner π, 0! Oooh...aahh.]

Exercise
3. Solve
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∇2u = 0, 0 < x,y < π

u0,y = y − π
2

2
, ux,π = x − π

2

2

ux, 0 = uπ,y = 0.

Consider Laplace’s equation

∇2u = 0

on the disc of radius a and centered at the origin. Specifically, consider the problem

∇2u = 0 for x2 + y2 ≤ c2,

u = f on the boundary x2 + y2 = c2.

In polar coordinates, the Laplacian operator looks like

∇2ur,θ = 1
r

∂
∂r

r ∂u
∂r

+ 1
r2

∂2u
∂θ2 .

Thus we have

1
r

∂
∂r

r ∂u
∂r

+ 1
r2

∂2u
∂θ2 = 0.

uc,θ = gθ.

I hope it is clear from all that has gone before that we should consider the eigenvalue problem

d2ϕ
dθ2 = −λ2ϕ

ϕπ = ϕ−π, and

ϕ ′π = ϕ ′−π

From our vast knowledge of Sturm-Liouville problems, we know what to expect. Let’s see what we
get.

ϕθ = Acosλθ + B sinλθ

and so our boundary conditions become
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Acosλπ + B sinλπ = Acos−λπ + B sin−λπ, and

λ−A sinλπ + Bcosλπ = λA sin−λπ − Bcos−λπ.

Or,

2B sinλπ = 0

λA sinλπ = 0

A moment’s reflection should convince you that we obtain eigenvalues λn
2 = n2 for

n = 0,1,2… .Corresponding to the eigenvalue λ0
2 = 0, we have the eigenfunction ϕθ = 1, and

corresponding to each eigenvalue λn
2 = n2, we have two independent eigenfunctions cosnθ and sinnθ.

With

ur,θ = α0r +∑
n=1

∞

αnrcosnθ + βnr sinnθ

we have

1
r

∂
∂r

r ∂u
∂r

+ 1
r2

∂2u
∂θ2

= 1
r

d
dr

α0
′ r +∑

n=1

∞

 1
r

d
dr

rαn
′ rcosnθ + 1

r
d
dr

rβn
′ r sinnθ

− n2 αnr
r2 cosnθ − n2 βnr

r2 sinnθ

= 0.

Hence,

1
r

d
dr

α0
′ r

+∑
n=1

∞

 1
r

d
dr

rαn
′ r − n2 αnr

r2 cosnθ + 1
r

d
dr

rβn
′ r − n2 βnr

r2 sinnθ

= 0.

This gives us the differential equations

1
r

d
dr

rα0
′ r = 0,

1
r

d
dr

rαn
′ r − 1

r2 n2αnr = 0, and

1
r

d
dr

rβn
′ r − 1

r2 n2βnr = 0.
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The first one is easy: rα0
′ r = A. Thus, α0r = A logr + B. The requirement that the solution be

nice at r = 0 means that A must be 0. Thus α0 =constant = a0. Next,

1
r

d
dr

rαn
′ r − 1

r2 n2αnr = 0 becomes

r2αn
′′r + rαn

′ r − n2αnr = 0.

This, as you no doubt remember from Mrs. Turner’s calculus class, is a so-called Cauchy-Euler
equation, all solutions of which are

αnr = Arn + Br−n.

Again, the solutions must be nice at r = 0, and so B = 0, and our solutions are

αnr = anrn.

In exactly the same way, we get

βnr = bnrn.

Putting it all together gives us

ur,θ = a0 +∑
n=1

∞

anrn cosnθ + bnrn sinnθ.

The condition uc,θ = gθ becomes

gθ = a0 +∑
n=1

∞

ancn cosnθ + bncn sinnθ.

Thus,

a0 = 1
2π ∫

−π

π

gθdθ,

an = 1
πcn ∫

−π

π

gθcosnθdθ, and
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bn = 1
πcn ∫

−π

π

gθ sinnθdθ

Example. Suppose c = 1 and gθ = θ2. Then

a0 = 1
2π ∫

−π

π

θ2dθ = π2

3

an = 1
π ∫

−π

π

θ2 cosnθdθ = 4−1n

n2 , and

bn = 1
π ∫

−π

π

θ2 sinnθdθ = 0

Hence,

ur,θ = a0 +∑
n=1

∞

anrn cosnθ + bnrn sinnθ

ur,θ = π2

3
+ 4∑

n=1

30
−1n

n2 rn cosnθ

Here is a picture:

Exercises
4. a)Show that the value of u at the center of the disc, u0,θ, is the average of the values of u on the
boundary of the disc.

b)Show that the value of u at the center of the disc, u0,θ, is the average of the values of u on any
circle r = a ≤ c.
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5. a)Use the result of Problem 4 to show that if ∇2u = 0 on some region R, then the maximum value of
u occurs on the boundary of u only if u is constant on R.

b)Show that if ∇2u = 0 on some region R, then the minimum value of u occurs on the boundary of u
only if u is constant on R.
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