
Chapter Six - Laplace’s Equation

Laplace’s equation, or the potential equation, is ∇2u = 0, where the operator ∇2 is the Laplacian,
the divergence of the gradient. In rectangular coordinates in two dimensions,

∇2u = ∂2u
∂x2 + ∂2u

∂y2

We are interested in the problem of finding u on a region R such that ∇2u = 0 in the interior of R and u
is some specified function on the boundary of R. This is called the Dirichlet problem. We begin with a
very special example:

∇2u = ∂2u
∂x2 + ∂2u

∂y2 = 0, 0 < x,y < π

u0,y = uπ,y = 0, and

ux, 0 = fx, ux,π = gx.

From all that has gone before, it should be clear why we set

ux,y = ∑
n=1

∞

αny sinnx.

This gives us

∑
n=1

∞

−n2αny + αn
′′y sinnx = 0,

which leads to the ordinary differential equation

− n2αny + αn
′′y = 0.

From this, we conclude that

αny = an coshny + bn sinhny.

Thus,

ux,y = ∑
n=1

∞

an coshny + bn sinhny sinnx.
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The remaining boundary conditions lead to

ux, 0 = ∑
n=1

∞

an sinnx = fx, and

ux,π = ∑
n=1

∞

an coshnπ + bn sinhnπ sinnx = gx.

Hence we need

an = 2
π ∫

0

π

fx sinnxdx, and

an coshnπ + bn sinhnπ = 2
π ∫

0

π

gxdx, or

bn = 1
sinhnπ

2
π ∫

0

π

gxdx − an coshnπ

Example. Consider the problem with fx = xπ − x and gx = 0. Then

an = 2
π ∫

0

π

xπ − x sinnxdx

= 4
πn3 1 + −1n+1 

bn = −an
coshnπ
sinhnπ

.

Now we have

ux,y = ∑
n=1

∞
an

sinhnπ
coshny sinhnπ − sinhnycoshnπ sinnx

= ∑
n=1

∞
an

sinhnπ
sinhnπ − y sinnx.

We can simplify things a bit by observing that an = 0 for n even. Let n = 2k − 1.Then

a2k−1 = 8
π2k − 13 ,
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and we have

ux,y = 8
π ∑

k=1

∞
sinh2k − 1π − y
2k − 13 sinh2k − 1π

sin2k − 1x.

Here is a picture:
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Exercise
1. Show that the solution to the original problem can be written

ux,y = ∑
n=1

∞
An sinhnπ − y + Bn sinhny

sinhnπ
sinnx, where

An = 2
π ∫

0

π

fx sinnxdx, and Bn = 2
π ∫

0

π

gx sinnxdx

2. Find the solution for fx = 0 and gx = xπ − x.

Now, what do we do about more realistic boundary conditions;viz, those in which u does not have
to be zero on x = 0 and x = π? The answer is rather simple. Suppose we want to have ux, 0 = fx,
ux,π = gx, u0,y = hy, and uπ,y = ky. We first find the solution of the problem in case
hy = ky = 0. This we have already done. The solution vx,y is given above. Next, we find the
solution wx,y of the problem with fx = gx = 0, and hy and ky given. Note there is really
nothing new here. This is just the previous problem with x and y interchanged−we simply turn our
heads. The solution u of the general problem is then ux,y = vx,y + wx,y.

Example. Let’s solve the general problem with fx = x2, gx = 0, ky = π − y2, and
hy = 0.First, v.

vx,y = ∑
n=1

∞
An sinhnπ − y

sinhnπ
sinnx, where
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An = 2
π ∫

0

π

x2 sinnxdx = 2
πn3 −1n+1n2π2 + 2−1n − 1.

Or,

vx,y = 2
π ∑

n=1

40
−1n+1n2π2 + 2−1n − 1

n3 sinhnπ
sinhnπ − y sinnx

Next,

wx,y = ∑
n=1

∞
Bn sinhnx

sinhnπ
sinny, where

Bn = 2
π ∫

0

π

π − y2 sinnydy = 2
π

2−1n − 1 + n2π2

n3

:
Or,

wx,y = 2
π ∑

n=1

∞

2−1n − 1 + n2π2 
sinhnx sinny

n3 sinhnπ

At last,

ux,y = vx,y + wx,y

Here are a couple of views of the graph of u.
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Note that it looks fairly nice, except at the corner 0,π of the region. Our problem came with nice
continuous boundary conditions, but we then split the problem into two problems each of which has
discontinuous boundary conditions. Thus both v and w, and hence u, are zero at this corner. We are
seeing the nasty behavior of the trigonometric series at discontinuities (Gibb’s phenomenon).Could this
have been avoided? Yes indeed−we simply replace u by U = u − V, where the function v is chosen to
insure that U is zero at all four corners of the rectangular region.

How do we find such a V? Easy. We let Vx,y = a1 + a2x + a3y + a4xy, where the a i are
determined so that V = U at the corners. Let’s see how this works with the problem we just completed.
In this case, we want

V0,0 = a1 = 0,

V0,π = a3π = 0,

Vπ,π = a2π + a4π2 = 0, and

Vπ, 0 = a2π = π2.

I hope it is clear that Vx,y = πx − xy = xπ − y does the job. We thus consider the problem

∇2U = ∇2u − V = ∇2u = 0,

Ux, 0 = ux, 0 − Vx, 0 = x2 − xπ

Uπ,y = π − y2 − ππ − y = −yπ − y,

U0,y = 0 − 0 = 0, and Ux,π = 0 − 0.

Study the solution just given and observe U has the same form as the solution to that problem,
except we need

An = 2
π ∫

0

π

xx − π sinnxdx = 4
πn3 −1n − 1, and

Bn = 2
π ∫

0

π

yy − π sinnydy = 4
πn3 −1n − 1
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Thus,

vx,y = 4
π ∑

n=1

∞

−1n − 1 sinhnπ − y
n3 sinhnπ

sinnx, and

wx,y = 4
π ∑

n=1

∞

−1n − 1 sinhnx
n3 sinhnπ

sinny

Then

Ux,y = vx,y + wx,y

= 4
π ∑

n=1

∞
−1n − 1
n3 sinhnπ

sinhnπ − y sinnx + sinhnx sinny.

Finally,

ux,y = Ux,y + Vx,y = Ux,y + xπ − y.

Or,

ux,y = xπ − y + 4
π ∑

n=1

∞
−1n − 1
n3 sinhnπ

sinhnπ − y sinnx + sinhnx sinny.

This is, of course, precisely the same as the solution found before, but this one should have better
convergence properties. Let’s take a look at a picture of the first 30 terms of this series:
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This one is absolutely gorgeous at the corner π, 0! Oooh...aahh.]

Exercise
3. Solve
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∇2u = 0, 0 < x,y < π

u0,y = y − π
2

2
, ux,π = x − π

2

2

ux, 0 = uπ,y = 0.

Consider Laplace’s equation

∇2u = 0

on the disc of radius a and centered at the origin. Specifically, consider the problem

∇2u = 0 for x2 + y2 ≤ c2,

u = f on the boundary x2 + y2 = c2.

In polar coordinates, the Laplacian operator looks like

∇2ur,θ = 1
r

∂
∂r

r ∂u
∂r

+ 1
r2

∂2u
∂θ2 .

Thus we have

1
r

∂
∂r

r ∂u
∂r

+ 1
r2

∂2u
∂θ2 = 0.

uc,θ = gθ.

I hope it is clear from all that has gone before that we should consider the eigenvalue problem

d2ϕ
dθ2 = −λ2ϕ

ϕπ = ϕ−π, and

ϕ ′π = ϕ ′−π

From our vast knowledge of Sturm-Liouville problems, we know what to expect. Let’s see what we
get.

ϕθ = Acosλθ + B sinλθ

and so our boundary conditions become
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Acosλπ + B sinλπ = Acos−λπ + B sin−λπ, and

λ−A sinλπ + Bcosλπ = λA sin−λπ − Bcos−λπ.

Or,

2B sinλπ = 0

λA sinλπ = 0

A moment’s reflection should convince you that we obtain eigenvalues λn
2 = n2 for

n = 0,1,2… .Corresponding to the eigenvalue λ0
2 = 0, we have the eigenfunction ϕθ = 1, and

corresponding to each eigenvalue λn
2 = n2, we have two independent eigenfunctions cosnθ and sinnθ.

With

ur,θ = α0r +∑
n=1

∞

αnrcosnθ + βnr sinnθ

we have

1
r

∂
∂r

r ∂u
∂r

+ 1
r2

∂2u
∂θ2

= 1
r

d
dr

α0
′ r +∑

n=1

∞

 1
r

d
dr

rαn
′ rcosnθ + 1

r
d
dr

rβn
′ r sinnθ

− n2 αnr
r2 cosnθ − n2 βnr

r2 sinnθ

= 0.

Hence,

1
r

d
dr

α0
′ r

+∑
n=1

∞

 1
r

d
dr

rαn
′ r − n2 αnr

r2 cosnθ + 1
r

d
dr

rβn
′ r − n2 βnr

r2 sinnθ

= 0.

This gives us the differential equations

1
r

d
dr

rα0
′ r = 0,

1
r

d
dr

rαn
′ r − 1

r2 n2αnr = 0, and

1
r

d
dr

rβn
′ r − 1

r2 n2βnr = 0.
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The first one is easy: rα0
′ r = A. Thus, α0r = A logr + B. The requirement that the solution be

nice at r = 0 means that A must be 0. Thus α0 =constant = a0. Next,

1
r

d
dr

rαn
′ r − 1

r2 n2αnr = 0 becomes

r2αn
′′r + rαn

′ r − n2αnr = 0.

This, as you no doubt remember from Mrs. Turner’s calculus class, is a so-called Cauchy-Euler
equation, all solutions of which are

αnr = Arn + Br−n.

Again, the solutions must be nice at r = 0, and so B = 0, and our solutions are

αnr = anrn.

In exactly the same way, we get

βnr = bnrn.

Putting it all together gives us

ur,θ = a0 +∑
n=1

∞

anrn cosnθ + bnrn sinnθ.

The condition uc,θ = gθ becomes

gθ = a0 +∑
n=1

∞

ancn cosnθ + bncn sinnθ.

Thus,

a0 = 1
2π ∫

−π

π

gθdθ,

an = 1
πcn ∫

−π

π

gθcosnθdθ, and
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bn = 1
πcn ∫

−π

π

gθ sinnθdθ

Example. Suppose c = 1 and gθ = θ2. Then

a0 = 1
2π ∫

−π

π

θ2dθ = π2

3

an = 1
π ∫

−π

π

θ2 cosnθdθ = 4−1n

n2 , and

bn = 1
π ∫

−π

π

θ2 sinnθdθ = 0

Hence,

ur,θ = a0 +∑
n=1

∞

anrn cosnθ + bnrn sinnθ

ur,θ = π2

3
+ 4∑

n=1

30
−1n

n2 rn cosnθ

Here is a picture:

Exercises
4. a)Show that the value of u at the center of the disc, u0,θ, is the average of the values of u on the
boundary of the disc.

b)Show that the value of u at the center of the disc, u0,θ, is the average of the values of u on any
circle r = a ≤ c.
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5. a)Use the result of Problem 4 to show that if ∇2u = 0 on some region R, then the maximum value of
u occurs on the boundary of u only if u is constant on R.

b)Show that if ∇2u = 0 on some region R, then the minimum value of u occurs on the boundary of u
only if u is constant on R.
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