Chapter Six - Laplace’s Equation

Laplace' s equation, or the potential equation, is V2u = 0, where the operator V2 isthe Laplacian,
the divergence of the gradient. In rectangular coordinatesin two dimensions,

vy = Q% , 2%

ox2  oy?

We are interested in the problem of finding u on aregion R such that V2u = 0 in theinterior of Rand u
is some specified function on the boundary of R. Thisis called the Dirichlet problem. We begin with a
very specia example:

_ 0%, 2%

Viu = o2 dy?
u0,y) = u(r,y) = 0, and

u(x,0) = f(x), u(x,7) = g(x).

=0,0<xy<rm

From all that has gone before, it should be clear why we set

uix,y) = i an(y) Snnx.

n=1
Thisgivesus

i[—nzan(y) +an(y)]snnx = 0,
n=1

which leads to the ordinary differential equation
—N?an(y) +an(y) = 0.
From this, we conclude that
an(y) = a,coshny + b, sinhny.

Thus,

uix,y) = Z:[an coshny + b, snhny]sinnx.

n=1



The remaining boundary conditions lead to

ux,0) = Zansinnx = f(x), and
n=1

uix, ) = Z:[an coshnz + bpsinhnz]sinnx = g(x).

n=1
Hence we need

an = % I f(x) snnxdx, and

ancoshnr + bysinhnz = % Ig(x)dx, or
0

1| 2 Tt
bn = Snhie |: = '([g(x)dx ancoshnn:|
Example. Consider the problem with f(x) = x(z — x) and g(x) = 0. Then

an = %Ix(n—x)sinnxdx
0

= 5[+ (D™

coshnr

b, = —an—= )
n " gnhnz

Now we have

0

uix,y) = Z smhn [coshnysinhnz — sinhnycoshnz ] sinnx

n=1

_anhn sinh(n(z - y)) sinnx.

We can simplify things a bit by observing that a, = O for neven. Let n = 2k— 1. Then

8

A1 = m )



and we have

ulx,y) = % i Snh((Zk = 1)(z — y)) sin(2k — 1)x.
k=1

(2k— 1)3snh(2k— 1)z

Hereisapicture:

Exercise
1. Show that the solution to the origina problem can be written

uex,y) = i[ Ansinh(n(z —V)) +Bnsinhny

_ } sinnx, where
sinhnz

n=1

Ay = % If(x)sinnxdx, and B, = % jg(x)sinnxdx
0 0

2. Find the solution for f(x) = 0 and g(X) = X(7 — X).

Now, what do we do about more redlistic boundary conditions;viz, those in which u does not have
to be zero on x = 0 and x = #? The answer is rather smple. Suppose we want to have u(x,0) = f(x),
uix,7) = g(x), u(0,y) = h(y), and u(r,y) = k(y). We first find the solution of the problem in case
h(y) = k(y) = 0. This we have dready done. The solution v(X,y) is given above. Next, we find the
solution w(x,y) of the problem with f(x) = g(x) = 0, and h(y) and k(y) given. Note there is redly
nothing new here. This is just the previous problem with x and y interchanged-we smply turn our
heads. The solution u of the general problemisthen u(x,y) = v(X,y) + W(X, ).

Example. Let's solve the generad problem with f(x) = x?, gx) =0, k(y) = (z —-y)?, and
h(y) = O.First, v.

V(X y) = ;[ A”Sir;hr(lﬂ(nz_ y)) ]sinnx, where



o

A, = szsinnxdx = —2_[(-D)™n%z2 + 2((-1)" - 1)].
. nd

Or,
_ 2N (DM 2D 1) -
V(X y) = 7; e sinh(n(z - y)) Sinnx
Next,
_ - Brsinhnx 7
W(X,y) = g[—sinhnn }smny, where
B A 2 _1\n _ 2.2
NOPY PN EE
0
Or,
_ 2 c 5 o, Sinhnxsinny
] - T 2 _1 n_l - a2 - .
w(x,Y) ,,le( (D" =1+ n2r?)= 3
At last,

ulx,y) = v(x,y) + w(x,y)

Here are a couple of views of the graph of u.




Note that it looks fairly nice, except at the corner (0, ) of the region. Our problem came with nice
continuous boundary conditions, but we then split the problem into two problems each of which has
discontinuous boundary conditions. Thus both v and w,and hence u, are zero at this corner. We are
seeing the nasty behavior of the trigonometric series at discontinuities (Gibb’s phenomenon).Could this
have been avoided? Y es indeed—we simply replace u by U = u—V, where the function v is chosen to
insurethat U is zero at al four corners of the rectangular region.

How do we find such a V? Easy. We let V(x,y) = a; + axx + asy + asxy, where the a; are
determined so that V = U at the corners. Let’s see how this works with the problem we just completed.
In this case, we want

V(0,0) = a; = 0,

V(0,7) = agm = 0,

V(r,7) = axrr + agn? = 0, and
V(r,0) = aprr = 2.

| hopeitisclear that V(X,y) = nx— Xy = X(x —y) does the job. We thus consider the problem

V2U = V3(u-V) = V2u = 0,
U(x,0) = u(x,0) — V(x,0) = x> — xr
U(r,y) = (m-y)> —n(z -y) = -y(z -y),
U@©,y) =0-0=0, andU(x,7) = 0-0.

Study the solution just given and observe U has the same form as the solution to that problem,
except we need

2 ” . 4 n
A, = 7jx(x—n)smnxolx = ()"~ D, and

0

By = % [yy-msnnydy = (D"~ 1)
0



Thus,

vy = 237 (D - 1)% snnx, and
n=1

WxY) = =& i((—l)“ - 1)_SMX_ gy

= n°sinhnz
Then
UXy) = v(xy) + WX, y)
= % :21 %(th(n(n —Yy)) Snnx + snhnxsinny).
Findly,
u(x.y) = Uxy) +V(xy) = UXy) +X(x - Y).
Or,
ux,y) = X(r —y) + % r:zl %(th(n(n —Yy)) Snnx + snhnxsinny).

Thisis, of course, precisely the same as the solution found before, but this one should have better
convergence properties. Let’stake alook at a picture of the first 30 terms of this series:

Thisoneis absolutely gorgeous at the corner (7, 0)! Oooh...aahh.]

Exercise
3. Solve



V2u=0,0<xy) <nm

w0y = (y- )" wxm = (x-5)°
ux,0) = u(z,y) = 0.

Consider Laplace' s equation
V2u=0
on the disc of radius a and centered at the origin. Specifically, consider the problem

V2u = 0for x? +y? < c?,
u = f onthe boundary x? + y? = c2.

In polar coordinates, the Laplacian operator looks like

2 _10(,0ou), 12
veu(r,0) = T (rar)+r2 207

Thus we have

10 (., 0u 1 0%u _
far(rar)+r2 062 0.

u(c,0) = g(9).

| hopeitis clear from al that has gone before that we should consider the elgenvalue problem

d2

@ =

¢(n) = ¢(-n), and
¢'(1) = ¢'(-n)

From our vast knowledge of Sturm-Liouville problems, we know what to expect. Let’s see what we
get.

() = AcosAf + Bsinid

and so our boundary conditions become



AcosAr + Bsnir = Acos(—Ar) + Bsin(-Ar), and
A[-AsinAr + BcosAr] = A[Asin(—Ar) — Bcos(—Ax)].
Or,

2Bsinir =0
AASNAzr =0

A moment's reflection should convince you that we obtain eigenvalues A3 = n? for
n=0,1,2....Corresponding to the eigenvalue 13 = 0, we have the eigenfunction ¢(0) = 1, and
corresponding to each eigenvalue 12 = n?, we have two independent eigenfunctions cosné and sinné.

With

ucr,0) = ao(r) + i[an(r)cosne + Bn(r)sinnd]

n=1
we have
10 (,0u), 1d%
rar (r ar) 12 002
_1d Sl d 1.d g s
= T3 (ozo(r))+nZ=1:[r g (ran(r)) cosnd + - (rfn(r)) sinng
—nza”—(zr)cosne—nZﬁ”—(zr)sinne]
r r
=0.
Hence,
14 (@)

[(%%(rag(r)) - nz—a’;(zr) ) cosnd + (%%(rﬁ%(r)) - nZﬁ?—(zr)) sinnd

+
MS 9;|Q.

>S5
1
=

=0.

This gives us the differentia equations

o

1+ (rap(r)) = 0,

o

r

1 / 1
T%(ran(r)) - r—znzan(r) =0, and

TG WBA()) = 5n2Ba(r) = 0.



Thefirst oneiseasy: rag(r) = A. Thus, ao(r) = Alogr + B. The requirement that the solution be
niceat r = 0 meansthat A must be 0. Thus e =constant = a,. Next,

li(rag(r)) - r%nzan(r) = 0 becomes

r2ap(r) +ron(r) —n%an(r) = 0

This, as you no doubt remember from Mrs. Turner’s calculus class, is a so-caled Cauchy-Euler
equation, all solutions of which are

an(r) = Ar"+Br™"
Again, the solutions must be niceat r = 0, and so B = 0, and our solutions are
an(r) = apr™
In exactly the same way, we get
Bn(r) = bpr™.

Putting it al together gives us

u(r,0) = ao+ Y _[anr"cosnd + byr"sinng].
n=1

The condition u(c,8) = g(0) becomes

g(0) = ap+ Y _[anc"cosnd + bnc"sinnd)].

n=1

Thus,
1
a0 = 5 j 9(6)d9,

__1
an = —n J. g(#) cosnhdh, and

3




_ 1 ;
bn = pvy j g(0) sinnbdo

-T

Example. Supposec = 1 and g(d) = 62. Then

Hence,

= —1\n
an= 1+ j@zcosnede = A'(n—g) and

-T

by = L [ 62sinngds - 0

-T

u(r,0) = ao+ Y _[anr"cosnd + byr"sinng]
n=1

30 n
ur,0) = £ +4y ED n cosne

n=1

3

n2

Hereisapicture:

Exercises

4. d)Show that the value of u at the center of the disc, u(0,0), is the average of the values of u on the
boundary of the disc.

b)Show that the value of u at the center of the disc, u(0,6), is the average of the values of u on any
circler =a<c.

10



5. a)Use the result of Problem 4 to show that if V2u = 0 on some region R, then the maximum value of
u occurs on the boundary of u only if uis constant on R.

b)Show that if V2u = 0 on some region R, then the minimum value of u occurs on the boundary of u
only if uisconstant on R.
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