
Chapter Seven - Vibrating Strings

The displacement u of a string is described by the equation

∂
∂x

Tx ∂u
∂x

− ρx ∂
2u

∂u2 = 0,

where Tx is the tension and ρx is the density. We have already seen this in the hanging chain
problem−there the tension is proportional to x and the density is constant. Let’s go back to the simpler
problem of a uniform string fixed at the ends x = 0 and x = π. In this case the tension and the density
are both constant: say Tx = T and ρx = ρ. Then

uxx −
ρ
T

u tt = 0, 0 < x < π

u0, t = uπ, t = 0, and

ux, 0 = fx, u tx, 0 = gx.

From our vast knowledge of eigenvalue problems we know to let u = ∑
n=1

n

αnt sinnx, which gives

us

∑
n=1

∞

−n2αnt −
ρ
T
αn
′′t sinx = 0.

Thus

αn
′′t + n2 T

ρ αn = 0,

which has solutions

αnt = an cosnvt + bn sinnvt, where

v = T
ρ .

Hence,

ux, t = ∑
n=1

∞

an cosnvt + bn sinnvt sinnx.

From the initial conditions, we know
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an = 2
π ∫

0

π

fx sinnxdx, and bn = 2
πnv ∫

0

π

gx sinnxdx.

Observe that the solution u is periodic in t: ux, t = ux, t + 2π/v

Example. Suppose v = 1, gx = 0, and

fx =
x/2 0 ≤ x ≤ π/2

−x − π/2 1/2 < x ≤ 1

Then

an = 2
π ∫

0

π

fx sinnxdx =
2sin nπ

2

πn2 ,

and bn = 0. Hence,

ux, t = 2
π ∑

n=1

∞ sin nπ
2

n2 cosnt sinnx.

Let’s see what this looks like for a sequence of values of time t.
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Suppose all the terms in the series for u save the one for n = 1 are zero. The solution then is
simply

ux, t = a1 cosvt + b1 sinvt sinx

= Acosvt + ϕ sinx.

In this oscillation, the string always has the shape of a single arch of the sine curve and vibrates with
the radian frequency v:
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The solution for all n = 0 except n = 2 has the form Acos2vt + ϕ sin2x.Here the string has the shape
of sin2x and oscillates with a frequency 2v, or twice the frequency of the previous solution:
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Musically, this oscillation would sound an octave higher than the first one. Convince yourself that for
n = 3, the string would vibrate with frequency 3v:
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What is the musical interval between this one and the previous one?
The solutions like these in which all but one of values of n are zero are called vibration

modes.Thus every solution is a superposition, or ”sum”, of these modes of vibration.
Let’s consider again the solution in which gx = 0. Then

ux, t = ∑
n=1

∞

an cosnvt sinnx.
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Drawing upon our vast knowledge of trigonometry, we see that

cosnvt sinnx = 1
2
sinnx + vt + sinnx − vt.

Hence,

ux,y = 1
2 ∑

n=1

∞

ansinnx + vt + sinnx − vt

= 1
2 ∑

n=1

∞

an sinnx + vt +∑
n=1

∞

an sinnx − vt .

Now we know that for most all x


f x = ∑

n=1

∞

an sinnx,

where

f is the odd periodic extension of f. Thus


f x + vt = ∑

n=1

∞

an sinnx + vt, and

f x − vt = ∑

n=1

∞

an sinnx − vt,

and our solution is

ux, t = 1
2


f x + vt +


f x − vt

This is special case of what is called D’Alembert’s formula of the wave equation. In case g is not
zero, there is the full version of D’Alembert’s solution:

ux, t = 1
2


f x + vt +


f x − vt + 1

2v ∫
x−vt

x+vt

gsds
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