Chapter Seven - Vibrating Strings

The displacement u of a string is described by the equation
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where T(x) is the tension and p(x) is the density. We have adready seen this in the hanging chain
problem-there the tension is proportional to x and the density is constant. Let’s go back to the smpler
problem of a uniform string fixed at the ends x = 0 and X = 7. In this case the tension and the density
are both constant: say T(x) = T and p(x) = p. Then

uxx—%uttzo,0<x<7r

u(o,t) = u(r,t) = 0, and
u(x,0) = f(x), ui(x,0) = g(x).

n
From our vast knowledge of eigenvalue problems we know to let u = > an(t) sinnx, which gives
n=1
us

0

Z[_nzan(t) - %aﬁ(t) ] sinx = 0.

n=1

Thus

all(t) + n2Lg, =0,
which has solutions

an(t) = a,cosnvt + b, sinnvt, where

- L
v= 5.

Hence,

uxt) = Z:(an cosnvt + b, sSinnvt) sSinnx.
n=1

From theinitial conditions, we know



-2 J.f(x)smnxdx and b, = LJ. g(x) Snnxadx.
0

Observe that the solution u is periodicin t: u(x,t) = u(x,t + 2z/v)

Example. Supposev = 1, g(x) = 0, and

x/2 0<x<nl2
f(x) =
-(X-m)/2 1U2<x<1

Then
oo 2sinz
an = % J.f(x)smnxdx = 7rn22 ,
and b, = 0. Hence,
2\~ SN
ux,t) = = Z 2 cosntsinnx.
n=

Let’s see what this looks like for a sequence of values of timet.
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Suppose al the terms in the series for u save the one for n = 1 are zero. The solution then is
smply

u(x,t) = (azcosvt + by sinvt) sinx
= Acos(Vt + @) SinX.

In this oscillation, the string always has the shape of a single arch of the sine curve and vibrates with
the radian frequency v:
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The solution for al n = 0 except n = 2 has the form Acos(2vt + ¢) Sin2x. Here the string has the shape
of sin2x and oscillates with a frequency 2v, or twice the frequency of the previous solution:
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Musicaly, this oscillation would sound an octave higher than the first one. Convince yourself that for
n = 3, the string would vibrate with frequency 3v:
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What isthe musical interval between this one and the previous one?
The solutions like these in which al but one of values of n are zero are called vibration
modes. Thus every solution is a superposition, or "sum”, of these modes of vibration.

Let’s consider again the solution in which g(x) = 0. Then

uxt) = Z an cosnvtsinnx.

n=1



Drawing upon our vast knowledge of trigonometry, we see that
cosnvtsInnx = %[si n(N(X + V) + sin(n(x — vt))].

Hence,

0

u(x,y) = % D" ag[sin(n(x+vt)) +sin(n(x - vt))]

n=1
- %(i ansn(n(x+w)) + iansin(n(x—vt))).
n=1 n=1

Now we know that for most al x
T = D_assinnx,
n=1
where T isthe odd periodic extension of f. Thus

Flx+w) = i ansin(n(x+vt)), and F(x— vt) = i an sSn(n(x—w)),

n=1 n=1

and our solution is
_ 1% T
uix,t) = 7(f(x+vt)+ f(x—vt))

This is special case of what is caled D’ Alembert’s formula of the wave equation. In case g is not
zero, there isthe full version of D’ Alembert’ s solution:

X+vt

uex,t) = % (?(x+ v+ T(x-w)) + % J. g(s)ds

X-vt



