Chapter Eight - Eigenvalues and Eigenfunctions Again

We turn our attention now to problems in which there are two "space variables"; *e.g.*

$$\nabla^2 u - u_t = 0,$$

where

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.$$

We thus consider the two dimensional eigenvalue problem

$$\nabla^2 \varphi = -\lambda^2 \varphi, \ (x, y) \in R$$

 $\varphi = 0$ on the boundary of the region *R*.

Let's begin with a square region $0 \le x, y \le \pi$. Then as usual we assume

$$\varphi(x,y) = \sum_{n=1}^{\infty} \alpha_n(y) \sin nx,$$

and get

$$\nabla^2 \varphi = \sum_{n=1}^{\infty} \left[-n^2 \alpha_n(y) + \alpha_n''(y) \right] \sin nx = \sum_{n=1}^{\infty} -\lambda^2 \alpha_n(y) \sin nx, \text{ or}$$
$$\sum_{n=1}^{\infty} \left[-n^2 \alpha_n(y) + \alpha_n''(y) - \lambda^2 \alpha_n(y) \right] \sin nx = 0.$$

Thus we need

$$-n^2 \alpha_n(y) + \alpha''_n(y) + \lambda^2 \alpha_n(y) = 0, \text{ or}$$
$$\alpha''_n(y) + (\lambda^2 - n^2)\alpha_n(y) = 0.$$

So,

$$\alpha_n(y) = a_n \cos \sqrt{\lambda^2 - n^2} y + b_n \sin \sqrt{\lambda^2 - n^2} y$$
, where

This gives us

$$\varphi(x,y) = \sum_{n=1}^{\infty} \left(a_n \cos \sqrt{\lambda^2 - n^2} \, y + b_n \sin \sqrt{\lambda^2 - n^2} \, y \right) \sin nx$$

The requirements that $\varphi(x, 0) = 0$ and $\varphi(x, \pi) = 0$ become

$$\sum_{n=1}^{\infty} a_n \sin nx = 0$$
, which means we must have $a_n = 0$; and
$$\sum_{n=1}^{\infty} b_n \sin \sqrt{\lambda^2 - n^2} \pi \sin nx = 0.$$

This gives us an infinite collection of equations $b_n \sin \sqrt{\lambda^2 - p^2} \pi = 0, n = 1, 2, 3, ...$

Suppose we have a solution in which $b_n \neq 0$. Then it must be true that $\sin \sqrt{\lambda^2 - n^2} \pi = 0$, or $\sqrt{\lambda^2 - n^2} = m$, an integer m = 0, 1, 2, ... That is, $m^2 = \lambda^2 - n^2$, or $\lambda_{nm}^2 = m^2 + n^2$. In other words, we have found eigenvalues $\lambda_{nm}^2 = m^2 + n^2$, with the corresponding eigenfunctions $\varphi_{nm}(x, y) = \sin my \sin nx$. It is not hard to convince yourself there are no other eigenvalues.

Example. The problem of finding the temperature u(x, y, t) in a square now looks very similar to the one-dimensional problem.

$$u_{xx} - u_t = 0, \ 0 < x, y < \pi, \ t > 0$$

$$u(x, 0) = u(x, \pi) = u(0, y) = u(\pi, y) = 0, \text{ and}$$

$$u(x, y, 0) = f(x, y).$$

We let $u(x, y, t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \alpha_{nm}(t) \sin my \sin nx$. Hence,

$$u_{xx} - u_t = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left[-\lambda_{nm}^2 \alpha_{nm}(t) - \alpha'_{nm}(t) \right] \sin my \sin nx = 0$$

And so,

$$-\lambda_{nm}^2\alpha_{nm}(t)-\alpha_{nm}'(t)=0$$

gives us

$$\alpha_{nm}(t) = a_{nm}e^{-\lambda_{nm}t}$$

Thus,

$$u(x, y, t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{nm} e^{-\lambda_{nm}t} \sin my \sin nx.$$

We get the coefficients a_{nm} from the initial condition:

$$u(x, y, 0) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{nm} \sin my \sin nx = f(x, y).$$
$$a_{nm} = \frac{\int_{0}^{\pi} \int_{0}^{\pi} f(x, y) \sin my \sin nx dx dy}{\int_{0}^{\pi} \int_{0}^{\pi} (\sin my \sin nx)^2 dx dy}$$
$$= \frac{4}{\pi^2} \int_{0}^{\pi} \int_{0}^{\pi} f(x, y) \sin my \sin nx dx dy$$

Next we turn our attention to the eigenvalue problem in case the region R is a disc of radius c centered at the origin. Using polar coordinates gives us

$$\nabla^2 \varphi(r,\theta) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \varphi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2} = -\lambda^2 \varphi$$
$$\varphi(c,\theta) = 0.$$

In the usual way, this leads us to the one-dimensional eigenvalue problem

$$\xi'' + \mu^2 \xi = 0, \quad -\pi < \theta < \pi$$

$$\xi(-\pi) = \xi(\pi) \text{ and}$$

$$\xi'(-\pi) = \xi'(\pi)$$

We have seen that this problem has eigenvalues μ_n^2 , where $\mu_n = 0, 1, 2, ...$, with corresponding eigenfunctions $\xi_0 = 1, \xi_{1n} = \cos n\theta$, and $\xi_{2n} = \sin n\theta$. We thus set

$$u(r,\theta) = \alpha_0(r) + \sum_{n=1}^{\infty} [\alpha_n(r)\cos n\theta + \beta_n(r)\sin n\theta],$$

which substituted into the original equation leads to

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\alpha_{0}}{\partial r}\right) + \lambda^{2}\alpha_{0} + \sum_{n=1}^{\infty}\left\{\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\alpha_{n}}{\partial r}\right) + \left(\lambda^{2} - \frac{n^{2}}{r^{2}}\right)\alpha_{n}\right]\cos n\theta + \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\beta_{n}}{\partial r}\right) + \left(\lambda^{2} - \frac{n^{2}}{r^{2}}\right)\beta_{n}\right]\sin n\theta\right\}$$
$$= 0.$$

Then we have the differential equations

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial y}{\partial r}\right) + \left(\lambda^2 - \frac{n^2}{r^2}\right)y = 0, n = 0, 1, 2, 3, \dots$$

Or,

$$\frac{\partial}{\partial r}\left(r\frac{\partial y}{\partial r}\right) + \left(r\lambda^2 - \frac{n^2}{r}\right)y = 0.$$

This is, of course, the celebrated Bessel's Equation. We know that all solutions look like

$$y(r) = AJ_n(\lambda r) + BY_n(\lambda r),$$

where J_n is the Bessel function of the first kind of order n and Y_r is, not surprisingly, the Bessel function of the second kind of order n. The function Y_n is not nice at r = 0, and so B = 0. Hence $y = AJ_n(\lambda r)$.

Putting these solutions back in the original expression for $u(r, \theta)$ gives us

$$u(r,\theta) = \alpha_0(r) + \sum_{n=1}^{\infty} [\alpha_n(r)\cos n\theta + \beta_n(r)\sin n\theta]$$

= $a_0 J_0(\lambda r) + \sum_{n=1}^{\infty} [a_n J_n(\lambda r)\cos n\theta + b_n J_n(\lambda r)\sin n\theta]$

Now the requirement that $u(c, \theta) = 0$ tells us that we must have

$$a_0 J_0(\lambda c) = 0,$$

$$a_n J_n(\lambda c) = 0, \text{ and }$$

$$b_n J_n(\lambda c) = 0, \text{ for } n = 1, 2, 3, \dots$$

Reflect on this system of equations. Clearly we can not have a nonzero eigenfunction u if all the coefficients a_n and b_n are zero. First, suppose $a_0 \neq 0$. Then we must have

$$J_0(\lambda c) = 0$$

In other words, λc must be a zero of J_0 . There are infinitely many of these, call them z_{0m} , for $m = 1, 2, 3, \ldots$ Let $\lambda_{0m} = z_{0m}/c$, for $m = 1, 2, 3, \ldots$ Now the remainder of the equations become

$$a_n J_n(\lambda_{0m} c) = a_n J_n(z_{0m}) = 0$$
 and $b_n J_n(z_{0m}) = 0, n = 1, 2, 3, \dots$

We know that $J_n(z_{0m}) \neq 0$ and so it must be true that $a_n = b_n = 0$, for $n \ge 1$. Thus the eigenfunctions corresponding to λ_{0m} are $J_0(\lambda_{0m})$.

Next, suppose we have a solution in which $a_k \neq 0$ for some $k \geq 1$. Then we have the equation $a_k J_k(\lambda c) = 0$ and because $a_k \neq 0$, it must be true that $\lambda c = z_{km}$, where z_{km} is the m^{th} zero of $J_k(r)$. Let $\lambda_{km} = z_{km}/c$. Then we have $b_k J_k(\lambda_{km}c) = 0$ for any b_k , and $J_n(\lambda_{nm}c) \neq 0$ for $n \neq k$. It follows that all a_n and b_n for $n \neq k$ must be zero, and substituting back in our expression for $u(r,\theta)$, gives us two independent eigenfunctions corresponding to λ_{km} . They are $J_k(\lambda_{km}r) \cos k\theta$ and $J_k(\lambda_{km}r) \sin \theta$.

To summarize: there is a two dimensional array of eigenvalues, λ_{nm}^2 , with $\lambda_{nm} = z_{nm}/c$, where z_{nm} is the m^{th} zero of J_n . The corresponding eigenfunctions are $J_0(\lambda_{0m}r)$, and $J_k(\lambda_{km}r)\cos k\theta$ and $J_k(\lambda_{km}r)\sin k\theta$ for $k \ge 1$.

Example. Consider

$$\nabla^2 u - u_t = 0, \ 0 \le r < a, -\pi < \theta \le \pi, t > 0$$
$$u(a, \theta, t) = 0, \text{ and}$$
$$u(r, \theta, 0) = g(r, \theta).$$

It should be obvious why we let

$$u(r,\theta,t) = \sum_{m=1}^{\infty} \alpha_{0m}(t) J_0(\lambda_{0m}r) + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} [\alpha_{nm}(t)\cos n\theta + \beta_{nm}(t)\sin n\theta] J_n(\lambda_{nm}r).$$

It should be clear to one and all that

$$u(r,\theta,t) = \sum_{m=1}^{\infty} a_{0m} e^{-\lambda_{nm}^2 t} J_0(\lambda_{0m} r) + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} [a_{nm} \cos n\theta + b_{nm} \sin n\theta] e^{-\lambda_{nm}^2 t} J_n(\lambda_{nm} r),$$

where

$$a_{0m} = \frac{\int_{0-\pi}^{c} \int_{-\pi}^{\pi} rg(r,\theta) J_0(\lambda_{0m}r) d\theta dr}{2\pi \int_{0}^{c} r(J_0(\lambda_{0m}r))^2 dr}, \quad m = 1, 2, 3, \dots$$

$$a_{nm} = \frac{\int_{0-\pi}^{c} \int_{-\pi}^{\pi} rg(r,\theta) J_n(\lambda_{nm}r) \cos n\theta d\theta dr}{\int_{0-\pi}^{c} \int_{-\pi}^{\pi} r(J_n(\lambda_{nm}r) \cos n\theta)^2 d\theta dr}, m, n = 1, 2, 3, ...$$
$$b_{nm} = \frac{\int_{0-\pi}^{c} \int_{-\pi}^{\pi} rg(r,\theta) J_n(\lambda_{nm}r) \sin n\theta d\theta dr}{\int_{0-\pi}^{c} \int_{-\pi}^{\pi} r(J_n(\lambda_{nm}r) \sin n\theta)^2 d\theta dr}, m, n = 1, 2, 3, ...$$