
Chapter Eight - Eigenvalues and Eigenfunctions Again

We turn our attention now to problems in which there are two ”space variables”; e.g,

∇2u − u t = 0,

where

∇2u = ∂2u
∂x2 + ∂2u

∂y2 .

We thus consider the two dimensional eigenvalue problem

∇2ϕ = −λ2ϕ, x,y ∈ R

ϕ = 0 on the boundary of the region R.

Let’s begin with a square region 0 ≤ x,y ≤ π.Then as usual we assume

ϕx,y = ∑
n=1

∞

αny sinnx,

and get

∇2ϕ = ∑
n=1

∞

−n2αny + αn
′′y sinnx = ∑

n=1

∞

−λ2αny sinnx, or

∑
n=1

∞

−n2αny + αn
′′y − λ2αny sinnx = 0.

Thus we need

− n2αny + αn
′′y + λ2αny = 0, or

αn
′′y + λ2 − n2αny = 0.

So,

αny = an cos λ2 − n2 y + bn sin λ2 − n2 y, where

This gives us
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ϕx,y = ∑
n=1

∞

an cos λ2 − n2 y + bn sin λ2 − n2 y sinnx

The requirements that ϕx, 0 = 0 and ϕx,π = 0 become

∑
n=1

∞

an sinnx = 0, which means we must have an = 0; and

∑
n=1

∞

bn sin λ2 − n2 π sinnx = 0.

This gives us an infinite collection of equations bn sin λ2 − p2 π = 0, n = 1,2,3,… .

Suppose we have a solution in which bn ≠ 0. Then it must be true that sin λ2 − n2 π = 0, or
λ2 − n2 = m, an integer m = 0,1,2,… .That is, m2 = λ2 − n2 , or λnm

2 = m2 + n2. In other words,
we have found eigenvalues λnm

2 = m2 + n2,with the corresponding eigenfunctions
ϕnmx,y = sinmy sinnx. It is not hard to convince yourself there are no other eigenvalues.

Example. The problem of finding the temperature ux,y, t in a square now looks very similar to the
one-dimensional problem.

uxx − u t = 0, 0 < x,y < π, t > 0

ux, 0 = ux,π = u0,y = uπ,y = 0, and

ux,y, 0 = fx,y.

We let ux,y, t = ∑
n=1

∞
∑
m=1

∞
αnmt sinmy sinnx. Hence,

uxx − u t = ∑
n=1

∞

∑
m=1

∞

−λnm
2 αnmt − αnm

′ t sinmy sinnx = 0.

And so,

− λnm
2 αnmt − αnm

′ t = 0

gives us

αnmt = anme−λnmt.

Thus,
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ux,y, t = ∑
n=1

∞

∑
m=1

∞

anme−λnmt sinmy sinnx.

We get the coefficients anm from the initial condition:

ux,y, 0 = ∑
n=1

∞

∑
m=1

∞

anm sinmy sinnx = fx,y.

anm =

∫
0

π

∫
0

π

fx,y sinmy sinnxdxdy

∫
0

π

∫
0

π

sinmy sinnx2dxdy

= 4
π2 ∫

0

π

∫
0

π

fx,y sinmy sinnxdxdy

Next we turn our attention to the eigenvalue problem in case the region R is a disc of radius c
centered at the origin. Using polar coordinates gives us

∇2ϕr,θ = 1
r

∂
∂r

r
∂ϕ
∂r

+ 1
r2

∂2ϕ
∂θ2 = −λ2ϕ

ϕc,θ = 0.

In the usual way, this leads us to the one-dimensional eigenvalue problem

ξ′′ + μ2ξ = 0, − π < θ < π

ξ−π = ξπ and

ξ′−π = ξ′π

We have seen that this problem has eigenvalues μn
2,where μn = 0,1,2,… , with corresponding

eigenfunctions ξ0 = 1, ξ1n = cosnθ, and ξ2n = sinnθ. We thus set

ur,θ = α0r +∑
n=1

∞

αnrcosnθ + βnr sinnθ,

which substituted into the original equation leads to
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1
r

∂
∂r

r ∂α0

∂r
+ λ2α0 +∑

n=1

∞
1
r

∂
∂r

r ∂αn

∂r
+ λ2 − n2

r2 αn cosnθ

+ 1
r

∂
∂r

r
∂βn

∂r
+ λ2 − n2

r2 βn sinnθ

= 0.

Then we have the differential equations

1
r

∂
∂r

r ∂y
∂r

+ λ2 − n2

r2 y = 0, n = 0,1,2,3,…

Or,

∂
∂r

r ∂y
∂r

+ rλ2 − n2

r y = 0.

This is, of course, the celebrated Bessel’s Equation. We know that all solutions look like

yr = AJnλr + BYnλr,

where Jn is the Bessel function of the first kind of order n and Yr is, not surprisingly, the Bessel
function of the second kind of order n. The function Yn is not nice at r = 0, and so B = 0. Hence
y = AJnλr.

Putting these solutions back in the original expression for ur,θ gives us

ur,θ = α0r +∑
n=1

∞

αnrcosnθ + βnr sinnθ

= a0J0λr +∑
n=1

∞

anJnλrcosnθ + bnJnλr sinnθ.

Now the requirement that uc,θ = 0 tells us that we must have

a0J0λc = 0,

anJnλc = 0, and

bnJnλc = 0, for n = 1,2,3,…

Reflect on this system of equations. Clearly we can not have a nonzero eigenfunction u if all the
coefficients an and bn are zero. First, suppose a0 ≠ 0. Then we must have
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J0λc = 0.

In other words, λc must be a zero of J0. There are infinitely many of these, call them z0m, for
m = 1,2,3,… . Let λ0m = z0m/c, for m = 1,2,3,… .Now the remainder of the equations become

anJnλ0mc = anJnz0m = 0 and bnJnz0m = 0,n = 1,2,3,… .

We know that Jnz0m ≠ 0 and so it must be true that an = bn = 0, for n ≥ 1. Thus the eigenfunctions
corresponding to λ0m are J0λ0m.

Next, suppose we have a solution in which ak ≠ 0 for some k ≥ 1. Then we have the equation
akJkλc = 0 and because ak ≠ 0, it must be true that λc = zkm, where zkm is the m th zero of Jkr. Let
λkm = zkm/c. Then we have bkJkλkmc = 0 for any bk, and Jnλnmc ≠ 0 for n ≠ k. It follows that all
an and bn for n ≠ k must be zero, and substituting back in our expression for ur,θ, gives us two
independent eigenfunctions corresponding to λkm. They are Jkλkmrcoskθ and Jkλkmr sinθ.

To summarize: there is a two dimensional array of eigenvalues, λnm
2 ,with λnm = znm/c, where znm

is the m th zero of Jn. The corresponding eigenfunctions are J0λ0mr , and Jkλkmrcoskθ and
Jkλkmr sinkθ for k ≥ 1.

Example. Consider

∇2u − u t = 0, 0 ≤ r < a,−π < θ ≤ π, t > 0

ua,θ, t = 0, and

ur,θ, 0 = gr,θ.

It should be obvious why we let

ur,θ, t = ∑
m=1

∞

α0mtJ0λ0mr +∑
n=1

∞

∑
m=1

∞

αnmtcosnθ + βnmt sinnθJnλnmr.

It should be clear to one and all that

ur,θ, t = ∑
m=1

∞

a0me−λnm
2 tJ0λ0mr +∑

n=1

∞

∑
m=1

∞

anm cosnθ + bnm sinnθe−λnm
2 tJnλnmr,

where

a0m =

∫
0

c

∫
−π

π

rgr,θJ0λ0mrdθdr

2π ∫
0

c

rJ0λ0mr2dr

, m = 1,2,3,…
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anm =

∫
0

c

∫
−π

π

rgr,θJnλnmrcosnθdθdr

∫
0

c

∫
−π

π

rJnλnmrcosnθ2dθdr

, m,n = 1,2,3,…

bnm =

∫
0

c

∫
−π

π

rgr,θJnλnmr sinnθdθdr

∫
0

c

∫
−π

π

rJnλnmr sinnθ2dθdr

, m,n = 1,2,3,…
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