
Chapter Nine - Vibrating Membranes

The vibrating membrane problem is simply the two-dimensional version of the vibrating string
problems. Specifically, we are given a plane region R and we want to find ux,y, t so that

∇2u − 1
k2 u tt = 0, for x,y ∈ R, t > 0

ux,y, t = 0 for x,y ∈ boundary of R;

ux,y, 0 = fx,y and u tx,y, 0 = gx,y.

Here k is a constant which depends on the physical properties of the membrane−density and tension.
We begin with the case in which R is a disc of radius c and centered at the origin. It should come

as no surprise that we use polar coordinates. Fortunately, we know all about the associated eigenvalue
problem

∇2ϕ = −λ2ϕ

ϕc,θ = 0.

Recall we have eigenvalues λnm = znm/c, n = 0,1,2,… , m = 1,2,3,… , where znm is the m th zero of
the Bessel function Jn. The corresponding eigenfunctions ϕnm are

ϕ0mr,θ = J0λ0mr, m = 1,2,3,…

ϕnmr,θ =
Jnλnmrcosnθ

Jnλnmr sinnθ
.

We thus let

ur,θ, t = ∑
m=1

∞

α0mtJ0λ0mr +∑
n=1

∞

∑
m=1

∞

αnmtcosnθ + βnmt sinnθJnλnmr.

Hence,
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∇2u − 1
k2 u tt =

∑
m=1

∞

−λ0m
2 α0mt − 1

k2 α0m
′′ t J0λ0mr +

∑
n=1

∞

∑
m=1

∞

−λnm
2 αnmt − 1

k2 α0m
′′ t cosnθ +

−λnm
2 βnmt − 1

k2 β0m
′′ t sinnθ Jnλnmr

We now have a bunch of ordinary differential equations of the form

γ ′′t + λ2k2γt = 0.

Thus,

αnmt = anm cosλnmkt + bnm sinλnmkt.

βnmt = cnm cosλnmkt + dnm sinλnmkt,

We substitute these vales back into our expression for ur,θ, t and when the dust settles, we see

ur,θ, t = ∑
m=1

∞

a0m cosλ0mkt + b0m sinλ0mktJ0λ0mr +

∑
n=1

∞

∑
m=1

∞

anm cosλnmkt + bnm sinλnmktJnλnmrcosnθ +

cnm cosλnmkt + dnm sinλnmktJnλnmr sinnθ

All the constants are determined from the initial conditions. First, ur,θ, 0 = fr,θ gives us

ur,θ, 0 = fr,θ = ∑
m=1

∞

a0mJ0λ0mr +

∑
n=1

∞

∑
m=1

∞

anmJnλnmrcosnθ + cnmJnλnmr sinnθ

Hence,
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a0m =

∫
−π

π

∫
0

c

rfr,θJ0λ0mrdrdθ

∫
−π

π

∫
0

c

rJ0λ0mr2drdθ

,

anm =

∫
−π

π

∫
0

c

rfr,θJnλnmrcosnθdrdθ

∫
−π

π

∫
0

c

rJ0λ0mrcosnθ2drdθ

, and

cnm =

∫
−π

π

∫
0

c

rfr,θJnλnmr sinnθdrdθ

∫
−π

π

∫
0

c

rJnλnmr sinnθ2drdθ

.

Exercises
1. Find expressions for the constants bnm and dnm in the preceding discussion.

Consider a solution u0m in which all series terms except those for λ0m are zero. Thus,

ur,θ, t = a0m cosλ0mkt + b0m sinλ0mktJ0λ0mr

= Acosλ0mkt + ηJ0λ0mr.

Ignoring the phase shift η, we have that u is a constant multiple of u0m :

u0m = cosλ0mktJ0λ0mr.

Let’s see what this looks like. Notice first, that the solution does not depend on θ. Thus anywhere you
take a cross-sectional slice of the membrane, you see the same curve. Initially, we see

u0mr,θ, 0 = J0λ0mr.

For m = 1, we have u01 = J0λ01r. This looks like
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Now, as t increases, we see this same shape, but with an amplitude of cosλ01kt. Here is a picture for
a few values of t:

The membrane thus oscillates up and down with a frequency of λ01k = 2.405k.
For m = 2, the membrane oscillates with a frequency of λ02k = 5.520k, and the corresponding

pictures of the cross-section look like

Observe that here there is a so-called nodal curve−a set of points that do not move. It is a circle of
radius λ01/λ02 c = 0.43569c. Looking down on the membrane, we see

I hope it is clear that the corresponding pictures for an oscillation frequency 1/λ03k look like
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Exercises
2. Find the radii of the nodal circles for the solution u03 = cosλ03ktJ0λ03r.

3. Describe and draw pictures of the oscillation having frequency λ05k.

Next, consider the solution in which all the terms save the ones for λ11 are zero. Here

ur,θ, t = a11 cosλ11kt + b11 sinλ11ktJ1λ11rcosθ +

c11 cosλ11kt + d11 sinλ11ktJ1λ11r sinθ.

Look at the first of the two terms:

ur,θ, t = a11 cosλ11kt + b11 sinλ11ktJ1λ11rcosθ

= Acosλ11kt + ηJ1λ11rcosθ.

As before, look at

u11r,θ, t = cosλ11ktJ1λ11rcosθ.

In this case, a cross-sectional slice through the membrane does indeed depend on θ. For θ = 0, we see
cosλ11ktJ1λ11r and for θ = π, we see −cosλ11ktJ1λ11r.Thus, for various values of t, this slice
looks like
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As we take slices for increasing values of θ, the picture looks the same, but with decreasing amplitude
until θ = π/2, at which the amplitude is zero; i.e., there is a nodal line. Look at the picture.
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Note that we get nothing new from the cosλ11ktJ1λ11r sinθ term; it is just this picture turned ninety
degrees. It should be clear how to see what the remaining vibration modes look like. For the solution
corresponding to λnm, the nodal lines are the solutions to the equation

Jnλnmrcosnθ.

For instance, for n.m = 3,2, the nodal lines look like
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A normal mode is a solution in which each point of the membrane oscillates about equilibrium
with the same frequency. Thus the solutions just discussed are normal modes.

Exercises
4. The picture shows the nodal lines of a vibrating membrane (same membrane). Which is vibrating
with the higher frequency? Explain.

Now let’s consider the case of a square membrane:

∇2u − 1
k2 u tt = 0, 0 < x,y < L, t > 0

ux, 0 = uL,y = ux,L = u0,y = 0, and

ux,y, 0 = fx,y, u tx,y, 0 = gx,y. .

From our previous work on eigenvalue problems, etc., we know to let

ux,y, t = ∑
n=1

∞

∑
m=1

∞

αnmt sin mπ
L

x sin nπ
L

y,

which gives us the solution
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ux,y, t = ∑
n=1

∞

∑
m=1

∞

anm cosλnmkt + bnm sinλnmkt sin mπ
L

x sin nπ
L

y,

where

λnm
2 = nπ

L
2
+ mπ

L
2
,

and the constants anm and bnm are determined from the initial conditions.

Exercise
5. Find expressions for the constants anm and bnm.

The normal modes of oscillation are more exciting in this case. Now if we assume the membrane
vibrates with a fundamental frequency λnm, there is a significant complication compared to the situation
with a circular membrane. In the circular case, the integers n and m determined exactly one term of our
series as the solution. Here this is not the case. The normal modes are not simply the terms

unm = anm cosλnmkt + bnm sinλnmkt sin nπ
L

x sin mπ
L

y

= Acosλnmkt + η sin mπ
L

x sin nπ
L

y

because the frequency λnmk may appear in more that one such term. Let’s illustrate with an example.
Suppose k = 1, and L = π. Then λnm = n2 + m2 . Now look at the natural frequency
λ13 = λ31 = 10 . Then all solutions of the form

cost 10 a sinx sin3y + b sin3x siny

are normal modes.
Look at the case where b = 0. Then each point x,y moves sinusoidally up and down with the

frequency 10 with an amplitude given by a constant times

sx,y = sinx sin3y

The nodal lines are simply places at which sx,y = 0.
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But with this same frequency, we also have lots of other normal modes. Let’s take a look at one of
them:

cost 10 sinx sin3y + 2sin3x siny

The nodal lines:

As you can imagine, the possibilities are almost endless.

Exercises
6. Draw some more graphs of nodal lines for normal modes of frequecy 10 .
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