Chapter Nine - Vibrating Membranes

The vibrating membrane problem is smply the two-dimensional version of the vibrating string
problems. Specificdly, we are given aplane region R and we want to find u(x, y, t) so that

Vau - %un =0, for(x,y) e Rt>0
u(x,y,t) = Ofor (x,y) € boundary of R;
U(X, Y, O) = f(X! Y) and Ut(x, Y, O) = g(X, Y)

Here k is a constant which depends on the physical properties of the membrane-density and tension.

We begin with the case in which R is a disc of radius ¢ and centered at the origin. It should come
as no surprise that we use polar coordinates. Fortunately, we know all about the associated eigenvalue
problem

V2p = -A%p
(c.0) = 0.

Recall we have eigenvalues Apm = Znm/C, N = 0,1,2,..., m = 1,2,3,..., where z,, is the m" zero of
the Bessdl function J,,. The corresponding eigenfunctions ¢, are

oom(r,0) = Jo(Aomr), m=1,2,3, ...

Jn(Anml) cOSNO
©mm(r,0) = (Am) ) .
Jn(Anml) SNNO

Wethus let

u(r,6,t) = i aom(t)Jo(Aoml) + i Z[anm(t) cosnd + Bom(t) SNNOTIn(Anmr).
m=1

n=1 m=1

Hence,



VZU - iuu =

Z[—/l(z)m()mm(t) -1 agm(t)}Jo(/’LOmr) +

m=1 k2
> Z{[—/’Lﬁmanm(t) - %agm(t)} cosnd +
n=1 m=1

[~22mBon® = - Bm(® | S0 }-30 1)
We now have abunch of ordinary differential equations of the form
y" (1) + 12k2y(t) = 0.
Thus,

anm(t) = anm COS/lnmkt + bnms.nﬁlnmkt.

Brom(t) = Crm COSAnmKt + i SINAnmkt,

We substitute these vales back into our expression for u(r,8,t) and when the dust settles, we see

u(r,0,t) = D _[aomCoSAomkt + bomSin Aomkt]Jo(Aomr ) +
m=1

D> " {[8mm COS A nmkt + Dom SN Anmkt]In(Anmt) cOSNO +

n=1 m=1

[Cnm COSApmkKt + dnm SINApmkt]In(Anmr) SINNG '}

All the congtants are determined from the initial conditions. First, u(r,0,0) = f(r,0) givesus

u(r,0,0) = f(r,0) = > aomJo(Aomr) +

m=1

D> [amIn(Ammt) COSNO + Comdn(Anmt) SNNO]

n=1 m=1

Hence,



[ [rf(r,0)Jo(Aomr)drdo
-z 0

[ [r(3o(Aomr))?drdo

-n 0

dom =

[ [rf(r,0)In(Anmr) cosngarde

, and

Anm =

{
Bl
— g

[r(Jo(Aomr) cosng)?drde
0

Bl

rf(r,0)In(Anmr) SNNOdrdo

Cnm— T C

[ [r@n(Anmr) sinng)®drde |

-n 0

Bl

—
oO+—0

Exercises
1. Find expressions for the constants b,m and dn, in the preceding discussion.

Consider a solution ugm in which all series terms except those for Aom are zero. Thus,

u(r,0,t) = [aomCoSAomkt + bom SN Aomkt]Jo(Aoml)
= ACOS(A()mkt + n)Jo(/IOmr).

Ignoring the phase shift 7, we have that u is a constant multiple of uom :

Let’s see what this looks like. Notice first, that the solution does not depend on 6. Thus anywhere you
take a cross-sectional dice of the membrane, you see the same curve. Initialy, we see

Uom(r,0,0) = Jo(Aomr).

Form = 1, wehave ug; = Jo(Aosr). Thislookslike



Now, ast increases, we see this same shape, but with an amplitude of cos(1n kt). Here is a picture for
afew valuesof t:

@

The membrane thus oscillates up and down with a frequency of Ak = 2.405k.

For m = 2, the membrane oscillates with a frequency of 102k = 5.520k, and the corresponding
pictures of the cross-section look like

®

Observe that here there is a so-called noda curve-a set of points that do not move. It is a circle of
radius (Ao1/A02)C = 0.43569c. Looking down on the membrane, we see

©

| hopeit is clear that the corresponding pictures for an oscillation frequency 1/Aqsk look like



Exercises
2. Find the radii of the nodal circles for the solution ugs = coS(Aoskt)Jo(Aosr).

3. Describe and draw pictures of the oscillation having frequency Agsk.

Next, consider the solution in which al the terms save the onesfor 11, are zero. Here

u(r,0,t) = [all COSﬂllkt + bllsin/’Lllkt]Jl(/’Lllr)cose +
[C11 COSﬂllkt + dllsin/’Lllkt]Jl(/’Lllr)sinG.

Look at the first of the two terms:

U(r,@,t) = [all COSﬂllkt + bllsin/’Lllkt]Jl(/’Lllr)cose
= Acos(A11kt + 17)J1(A11r) COS6.

As before, look at
U1 (r,0,t) = cos(A11kt)J1(A115) coso.

In this case, a cross-sectiona dice through the membrane does indeed depend on 6. For 8 = 0, we see
coS(A11kt)J1(A11r) and for 0 = &, we see —cos(A11kt)J1(A11r). Thus, for various values of t, this dice
looks like



As we take dices for increasing values of 6,the picture looks the same, but with decreasing amplitude
until & = 7/2, at which the amplitude is zero; i.e., thereisanodal line. Look at the picture.

Note that we get nothing new from the cos(A11kt)J1(A11r) SINO term; it isjust this picture turned ninety
degrees. It should be clear how to see what the remaining vibration modes look like. For the solution
corresponding to A.m, the nodal lines are the solutions to the equation

Jn(Anml) CcOSNG.
For instance, for (n.m) = (3,2), the nodal lineslook like



A normal mode is a solution in which each point of the membrane oscillates about equilibrium
with the same frequency. Thus the solutions just discussed are normal modes.

Exercises

4. The picture shows the nodal lines of a vibrating membrane (same membrane). Which is vibrating
with the higher frequency? Explain.

P

Now let’s consider the case of a square membrane:

Vzu—%utt=0,0<x,y< L,t>0

u(x,0) = u(L,y) = u(x,L) = u(0,y) = 0, and
U(X1y1 O) = f(Xiy)! Ut(x,y1 O) = g(XaY)

From our previous work on eigenvalue problems, etc., we know to let

Uy, 0 = - > am(® sin TWxsin Ay,

n=1 m=1

which gives us the solution



uex,y,t) = Z Z[anm COSAnmkt + bam SINApmkt] sin %xsin n—lzry,

n=1 m=1

where

2 2
> _ (nm mre
’I”m‘(l_) +(|_)’
and the constants a,m and b, are determined from the initial conditions.

Exercise
5. Find expressions for the constants apm and bym.

The normal modes of oscillation are more exciting in this case. Now if we assume the membrane
vibrates with a fundamenta frequency Anm, there is a significant complication compared to the situation
with a circular membrane. In the circular case, the integers n and m determined exactly one term of our
series as the solution. Here thisis not the case. The normal modes are not smply the terms

Unm = (anm COS/lnmkt + bnmsnlnmkt)snn—l_nxsn%y

= AcOS(Anmkt + ) SiN %xsin n—lzry

because the frequency Anmk may appear in more that one such term. Let’s illustrate with an example.
Suppose k=1, and L=7x. Then Amym= Vn>+m?. Now look at the natural frequency
A1z = Az = /10. Thendl solutions of the form

cos(ty/10 ) (asinxsin3y + bsin3xsiny)
are normal modes.

Look at the case where b = 0. Then each point (x,y) moves sinusoidally up and down with the
frequency v10 with an amplitude given by a constant times

S(X,y) = Shxsn3y

The nodd lines are smply places at which s(x,y) = 0.



But with this same frequency, we aso have lots of other normal modes. Let's take a look at one of
them:

cos(ty/10 )(sinxsin3y + 2sin3xsiny)
The nodal lines:

As you can imagine, the possibilities are amost endless.

Exercises
6. Draw some more graphs of nodal lines for normal modes of frequecy +/10.



