
Chapter Nine - Vibrating Membranes

The vibrating membrane problem is simply the two-dimensional version of the vibrating string
problems. Specifically, we are given a plane region R and we want to find ux,y, t so that

∇2u − 1
k2 u tt = 0, for x,y ∈ R, t > 0

ux,y, t = 0 for x,y ∈ boundary of R;

ux,y, 0 = fx,y and u tx,y, 0 = gx,y.

Here k is a constant which depends on the physical properties of the membrane−density and tension.
We begin with the case in which R is a disc of radius c and centered at the origin. It should come

as no surprise that we use polar coordinates. Fortunately, we know all about the associated eigenvalue
problem

∇2ϕ = −λ2ϕ

ϕc,θ = 0.

Recall we have eigenvalues λnm = znm/c, n = 0,1,2,… , m = 1,2,3,… , where znm is the m th zero of
the Bessel function Jn. The corresponding eigenfunctions ϕnm are

ϕ0mr,θ = J0λ0mr, m = 1,2,3,…

ϕnmr,θ =
Jnλnmrcosnθ

Jnλnmr sinnθ
.

We thus let

ur,θ, t = ∑
m=1

∞

α0mtJ0λ0mr +∑
n=1

∞

∑
m=1

∞

αnmtcosnθ + βnmt sinnθJnλnmr.

Hence,
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∇2u − 1
k2 u tt =

∑
m=1

∞

−λ0m
2 α0mt − 1

k2 α0m
′′ t J0λ0mr +

∑
n=1

∞

∑
m=1

∞

−λnm
2 αnmt − 1

k2 α0m
′′ t cosnθ +

−λnm
2 βnmt − 1

k2 β0m
′′ t sinnθ Jnλnmr

We now have a bunch of ordinary differential equations of the form

γ ′′t + λ2k2γt = 0.

Thus,

αnmt = anm cosλnmkt + bnm sinλnmkt.

βnmt = cnm cosλnmkt + dnm sinλnmkt,

We substitute these vales back into our expression for ur,θ, t and when the dust settles, we see

ur,θ, t = ∑
m=1

∞

a0m cosλ0mkt + b0m sinλ0mktJ0λ0mr +

∑
n=1

∞

∑
m=1

∞

anm cosλnmkt + bnm sinλnmktJnλnmrcosnθ +

cnm cosλnmkt + dnm sinλnmktJnλnmr sinnθ

All the constants are determined from the initial conditions. First, ur,θ, 0 = fr,θ gives us

ur,θ, 0 = fr,θ = ∑
m=1

∞

a0mJ0λ0mr +

∑
n=1

∞

∑
m=1

∞

anmJnλnmrcosnθ + cnmJnλnmr sinnθ

Hence,
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a0m =

∫
−π

π

∫
0

c

rfr,θJ0λ0mrdrdθ

∫
−π

π

∫
0

c

rJ0λ0mr2drdθ

,

anm =

∫
−π

π

∫
0

c

rfr,θJnλnmrcosnθdrdθ

∫
−π

π

∫
0

c

rJ0λ0mrcosnθ2drdθ

, and

cnm =

∫
−π

π

∫
0

c

rfr,θJnλnmr sinnθdrdθ

∫
−π

π

∫
0

c

rJnλnmr sinnθ2drdθ

.

Exercises
1. Find expressions for the constants bnm and dnm in the preceding discussion.

Consider a solution u0m in which all series terms except those for λ0m are zero. Thus,

ur,θ, t = a0m cosλ0mkt + b0m sinλ0mktJ0λ0mr

= Acosλ0mkt + ηJ0λ0mr.

Ignoring the phase shift η, we have that u is a constant multiple of u0m :

u0m = cosλ0mktJ0λ0mr.

Let’s see what this looks like. Notice first, that the solution does not depend on θ. Thus anywhere you
take a cross-sectional slice of the membrane, you see the same curve. Initially, we see

u0mr,θ, 0 = J0λ0mr.

For m = 1, we have u01 = J0λ01r. This looks like
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Now, as t increases, we see this same shape, but with an amplitude of cosλ01kt. Here is a picture for
a few values of t:

The membrane thus oscillates up and down with a frequency of λ01k = 2.405k.
For m = 2, the membrane oscillates with a frequency of λ02k = 5.520k, and the corresponding

pictures of the cross-section look like

Observe that here there is a so-called nodal curve−a set of points that do not move. It is a circle of
radius λ01/λ02 c = 0.43569c. Looking down on the membrane, we see

I hope it is clear that the corresponding pictures for an oscillation frequency 1/λ03k look like
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Exercises
2. Find the radii of the nodal circles for the solution u03 = cosλ03ktJ0λ03r.

3. Describe and draw pictures of the oscillation having frequency λ05k.

Next, consider the solution in which all the terms save the ones for λ11 are zero. Here

ur,θ, t = a11 cosλ11kt + b11 sinλ11ktJ1λ11rcosθ +

c11 cosλ11kt + d11 sinλ11ktJ1λ11r sinθ.

Look at the first of the two terms:

ur,θ, t = a11 cosλ11kt + b11 sinλ11ktJ1λ11rcosθ

= Acosλ11kt + ηJ1λ11rcosθ.

As before, look at

u11r,θ, t = cosλ11ktJ1λ11rcosθ.

In this case, a cross-sectional slice through the membrane does indeed depend on θ. For θ = 0, we see
cosλ11ktJ1λ11r and for θ = π, we see −cosλ11ktJ1λ11r.Thus, for various values of t, this slice
looks like
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As we take slices for increasing values of θ, the picture looks the same, but with decreasing amplitude
until θ = π/2, at which the amplitude is zero; i.e., there is a nodal line. Look at the picture.
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Note that we get nothing new from the cosλ11ktJ1λ11r sinθ term; it is just this picture turned ninety
degrees. It should be clear how to see what the remaining vibration modes look like. For the solution
corresponding to λnm, the nodal lines are the solutions to the equation

Jnλnmrcosnθ.

For instance, for n.m = 3,2, the nodal lines look like
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A normal mode is a solution in which each point of the membrane oscillates about equilibrium
with the same frequency. Thus the solutions just discussed are normal modes.

Exercises
4. The picture shows the nodal lines of a vibrating membrane (same membrane). Which is vibrating
with the higher frequency? Explain.

Now let’s consider the case of a square membrane:

∇2u − 1
k2 u tt = 0, 0 < x,y < L, t > 0

ux, 0 = uL,y = ux,L = u0,y = 0, and

ux,y, 0 = fx,y, u tx,y, 0 = gx,y. .

From our previous work on eigenvalue problems, etc., we know to let

ux,y, t = ∑
n=1

∞

∑
m=1

∞

αnmt sin mπ
L

x sin nπ
L

y,

which gives us the solution
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ux,y, t = ∑
n=1

∞

∑
m=1

∞

anm cosλnmkt + bnm sinλnmkt sin mπ
L

x sin nπ
L

y,

where

λnm
2 = nπ

L
2
+ mπ

L
2
,

and the constants anm and bnm are determined from the initial conditions.

Exercise
5. Find expressions for the constants anm and bnm.

The normal modes of oscillation are more exciting in this case. Now if we assume the membrane
vibrates with a fundamental frequency λnm, there is a significant complication compared to the situation
with a circular membrane. In the circular case, the integers n and m determined exactly one term of our
series as the solution. Here this is not the case. The normal modes are not simply the terms

unm = anm cosλnmkt + bnm sinλnmkt sin nπ
L

x sin mπ
L

y

= Acosλnmkt + η sin mπ
L

x sin nπ
L

y

because the frequency λnmk may appear in more that one such term. Let’s illustrate with an example.
Suppose k = 1, and L = π. Then λnm = n2 + m2 . Now look at the natural frequency
λ13 = λ31 = 10 . Then all solutions of the form

cost 10 a sinx sin3y + b sin3x siny

are normal modes.
Look at the case where b = 0. Then each point x,y moves sinusoidally up and down with the

frequency 10 with an amplitude given by a constant times

sx,y = sinx sin3y

The nodal lines are simply places at which sx,y = 0.

8



But with this same frequency, we also have lots of other normal modes. Let’s take a look at one of
them:

cost 10 sinx sin3y + 2sin3x siny

The nodal lines:

As you can imagine, the possibilities are almost endless.

Exercises
6. Draw some more graphs of nodal lines for normal modes of frequecy 10 .
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