
Laplace’s Equation on a Disc

Let’s look at Laplace’s equation

∇2u = 0

on the disc of radius a and centered at the origin. Specifically, consider the problem

∇2u = 0 for x2 + y2 ≤ c2,

u = f on the boundary x2 + y2 = c2.

In polar coordinates, the Laplacian operator looks like

∇2ur,θ = 1
r

∂
∂r

r ∂u
∂r

+ 1
r2

∂2u
∂θ2 .

Thus we have

1
r

∂
∂r

r ∂u
∂r

+ 1
r2

∂2u
∂θ2 = 0.

uc,θ = gθ.

I hope it is clear from all that has gone before that we should consider the eigenvalue problem

d2ϕ
dθ2 = −λ2ϕ

ϕπ = ϕ−π, and

ϕ ′π = ϕ ′−π

From our vast knowledge of Sturm-Liouville problems, we know what to expect. Let’s see what we
get.

ϕθ = Acosλθ + B sinλθ

and so our boundary conditions become

Acosλπ + B sinλπ = Acos−λπ + B sin−λπ, and

λ−A sinλπ + Bcosλπ = λA sin−λπ − Bcos−λπ.

Or,
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2B sinλπ = 0

λA sinλπ = 0

A moment’s reflection should convince you that we obtain eigenvalues λn
2 = n for

n = 0,1,2… .Corresponding to the eigenvalue λ0
2 = 0, we have the eigenfunction ϕθ = 1, and

corresponding to each eigenvalue λn
2 = n, we have two independent eigenfunctions cosnθ and sinnθ.

With

ur,θ = α0r +∑
n=1

∞

αnrcosnθ + βnr sinnθ

we have

1
r

∂
∂r

r ∂u
∂r

+ 1
r2

∂2u
∂θ2

= 1
r

d
dr

α0
′ r +∑

n=1

∞

 1
r

d
dr

rαn
′ rcosnθ + 1

r
d
dr

rβn
′ r sinnθ

− n2 αnr
r2 cosnθ − n2 βnr

r2 sinnθ

= 0.

Hence,

1
r

d
dr

α0
′ r

+∑
n=1

∞

 1
r

d
dr

rαn
′ r − n2 αnr

r2 cosnθ + 1
r

d
dr

rrβn
′ r − n2 βnr

r2 sinnθ

= 0.

This gives us the differential equations

1
r

d
dr

rα0
′ r = 0,

1
r

d
dr

rαn
′ r − 1

r2 n2αnr = 0, and

1
r

d
dr

rβn
′ r − 1

r2 n2βnr = 0.

The first one is easy: rα0
′ r = A. Thus, α0r = A logr + B. The requirement that the solution be nice

at r = 0 means that A must be 0. Thus α0 =constant = a0. Next,

1
r

d
dr

rαn
′ r − 1

r2 n2αnr = 0 becomes

r2αn
′′r + rαn

′ r − n2αnr = 0.
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This, as you no doubt remember from Mrs. Turner’s calculus class, is a so-called Cauchy-Euler
equation, all solutions of which are

αnr = Arn + Br−n.

Again, the solutions must be nice at r = 0, and so B = 0, and our solutions are

αnr = anrn.

In exactly the same way, we get

βnr = bnrn.

Putting it all together gives us

ur,θ == a0 +∑
n=1

∞

anrn cosnθ + bnrn sinnθ.

The condition uc,θ = gθ becomes

gθ = a0 +∑
n=1

∞

ancn cosnθ + bncn sinnθ.

Thus,

a0 = 1
2π ∫

−π

π

gθdθ,

an = 1
πcn ∫

−π

π

gθcosnθdθ, and

bn = 1
πcn ∫

−π

π

gθ sinnθdθ
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