You may use any books, notes, tables, calculators, or computers you wish. Be sure to write so that someone other than yourself can understand your exposition.

1. Find a vector description of the straight line tangent to the curve described by

$$\mathbf{r}(t) = (t^3 + t - 2)\mathbf{i} - t^2\mathbf{j} + (t+1)\mathbf{k}$$

at the point (-4, -1, 0).

To find a vector description of a line we need a point \mathbf{p} on the line and a vector \mathbf{v} in the direction of the line. We are given $\mathbf{p} = (-4, -1, 0) = -4\mathbf{i} - \mathbf{j}$, so we need only find \mathbf{v} . This is easy—it is simply the derivative of $\mathbf{r}(t)$ at \mathbf{p} .

First, let's find t_0 so that $\mathbf{r}(t_0) = \mathbf{p}$:

$$\mathbf{r}(t_0) = (t_0^3 + t_0 - 2)\mathbf{i} - t_0^2\mathbf{j} + (t_0 + 1)\mathbf{k} = -4\mathbf{i} - \mathbf{j}$$

I hope it's clear that $t_0 = -1$ does the job. Thus we need $\mathbf{v} = \mathbf{r}'(-1)$. Now,

$$\mathbf{r}'(t) = (3t^2 + 1)\mathbf{i} - 2t\mathbf{j} + \mathbf{k}.$$

Thus, $\mathbf{v} = \mathbf{r}'(-1) = 4\mathbf{i} + 2\mathbf{j} + \mathbf{k}$. A vector description of our line is $l(t) = \mathbf{p} + t\mathbf{v}$:

$$l(t) = -4i - j + t(4i + 2j + k) = (4t - 4)i + (2t - 1)j + tk$$

2. The curve in the picture is described by $\mathbf{r}(t)$. At the point $\mathbf{r}(u)$, the unit tangent \mathbf{T} vector is one of the vectors \mathbf{A} or \mathbf{B} and the principal normal vector is one of the vectors \mathbf{C} or \mathbf{D} . At the point $\mathbf{r}(w)$, the vector \mathbf{E} is the unit tangent \mathbf{T} and the principal normal is one of the vectors \mathbf{F} or \mathbf{G} . We know that $\mathbf{r}'(t) \neq 0$ for all t. Answer the following questions and explain your answers. If the answer can not be determined from the information given, explain why not.

a) Which of the vectors **A** or **B** is the unit tangent **T** at $\mathbf{r}(u)$?

The tangent at $\mathbf{r}(w)$ is **E** and so we are moving from right to left along the curve. Thus **B** is the unit tangent at $\mathbf{r}(u)$.

b) Which is larger, the curvature at $\mathbf{r}(u)$ or the curvature at $\mathbf{r}(w)$?

The curvature at $\mathbf{r}(u)$ is larger than the curvature at $\mathbf{r}(w)$. The tangent is changing more rapidly at $\mathbf{r}(u)$.

c)Which is larger, *u* or *w*?

The tangent points in the direction of increasing argument t. Thus u > w.

d)Which of the vectors \mathbf{C} or \mathbf{D} is the principal normal at $\mathbf{r}(u)$?

The tangent is changing in the direction of \mathbf{D} . Thus \mathbf{D} is the principal normal.

e) Which of the vectors \mathbf{F} or \mathbf{G} is the principal normal at $\mathbf{r}(w)$?

F is the principal normal.

Finis