Proof of Theorem 5.7

Theorem 5.7. Given an $n \times n$ matrix $A = (A_1, A_2, ..., A_n)$ and given any *n*-dimensional vector *V*, let *B* be the $n \times n$ matrix obtained from *A* by replacing the $k^{th} A_k$ row by *V*, and let *C* be the matrix obtained by replacing k^{th} row A_k by $A_k + V$. Then

$$d(C) = d(A) + d(B).$$

Proof: Define the function *f* of the rows of *A* by

$$f(A_1, A_2, ..., A_n) = d(C) - d(B)$$

= $d(A_1, ..., A_k + V, ..., A_n) - d(A_1, ..., V, ..., A_n).$

We prove the theorem by showing that $f(A_1, A_2, ..., A_n) = d(A)$.

First, suppose the set $\{A_1, A_2, ..., A_n\}$ is dependent. Then there are scalars c_j not all zero so $c_1A_1 + c_2A_2 + ... + c_nA_n = 0$. If $c_k = 0$, then $\{A_1, ..., A_{k-1}, A_{k+1}, ..., A_n\}$ is also dependent. In this case, we have d(A) = d(B) = d(C) = 0, and so f(A) = 0. Hence, f(A) = d(A). Suppose, on the other hand, that $c_k \neq 0$. Then A_k is a linear combination of the other rows, and we have

$$d(A_1,...,A_k+V,...,A_n) = d(A_1,...,V,...,A_n).$$

Hence f(A) = 0, and, of course, d(A) = 0. Again, we see that f(A) = d(A).

Next, suppose $\{A_{1}, A_{2}, ..., A_{n}\}$ is independent. Then this collection spans the space of all n - tuples, and so $V = \sum_{j=1}^{n} \alpha_{j}A_{j}$. We write $V = \alpha_{k}A_{k} + \sum_{j \neq k}^{n} \alpha_{j}A_{j}$. Then $d(A_{1}, ..., A_{k} + V, ..., A_{n}) = d(A_{1}, ..., A_{k} + \alpha_{k}A_{k} + \sum_{j \neq k}^{n} \alpha_{j}A_{j}, ..., A_{n})$ $= d(A_{1}, ..., (1 + \alpha_{k})A_{k}, ..., A_{n}).$

Also,

$$d(A_1,...,V,...,A_n) = d(A_1,...,\alpha_k A_k + \sum_{j \neq k}^n \alpha_j A_j,...,A_n)$$

= $d(A_1,...,\alpha_k A_k,...,A_n).$

It follows that

$$f(A) = d(A_1, ..., (1 + \alpha_k)A_k, ..., A_n) - d(A_1, ..., \alpha_k A_k, ..., A_n)$$

= $(1 + \alpha_k)d(A) - \alpha_k d(A) = d(A),$

and we are done.

Many thanks go to Mr. Kapp and Mr. Roper. The ideas for this proof are theirs; only the organization and exposition are mine.