Chapter Eleven - Quotient Spaces

Proposition 11.1. Let $f: X \to Y$ be a function from a topological space (X, T) into a set Y. Then the collection $\mathbf{S} = \{U \subset Y : f^{-1}(U) \in T\}$ is a topology for Y.

Definition. The topology **S** in the previous proposition is the **strong topology by** f. In case Y = f(X), the strong topology by f is called the **quotient topology by** f.

Proposition 11.2. Suppose $f: X \to Y$ is a function from a topological space (X, T) into a topological space (Y, V), and let **S** be the strong topology by f. Then f is continuous if and only if $V \subset S$.

Definitions. A function $f: X \to f(X) = Y$ from one topological space onto another is **open** if f(U) is open whenever U is open. It is **closed** if f(F) is closed whenever F is closed.

Proposition 11.3. Suppose (X, T) and (Y, V) are topological spaces and suppose $f: X \to f(X) = Y$ is an open function. If **S** is the quotient(=strong) topology by f, then **S** \subset **V**.

Proposition 11.4. Suppose (X, T) and (Y, V) are topological spaces and suppose $f: X \to f(X) = Y$ is a closed function. If **S** is the quotient topology by f, then **S** \subset **V**.

Definition. A continuous function $f: X \to f(X) = Y$ from one topological space onto another is called a **quotient map** if the topology of Y is the quotient topology by f.

Theorem 11.5. Every open or closed continuous function from one topological space onto another is a quotient map.

Proposition 11.6. Suppose $f: X \to f(X) = Y$ is continuous, where X is a compact topological space, and Y is a Hausdorff space. Then f is a quotient map.

Definitions. Suppose **D** is a collection of subsets of a set X. If the elements of **D** are pairwise disjoint, and if $X = \cup D$, then **D** is called a **decomposition** of X. The function $p: X \to D$ define by p(x) = D, where D is the unique element of **D** such that $x \in D$ is called the **natural map** associated with **D**.

If R is an equivalence relation on a set X, the collection of all the equivalence classes is a decomposition called the **decomposition induced by** R. In this case the decomposition is denoted X/R.

Definition. Suppose X is a topological space, and suppose R is an equivalence relation on X. The set X/R endowed with the quotient topology by the natural map is called the **quotient space** determined by X and R. A quotient space is also frequently called a **decomposition space**, or sometimes an **identification space**

Definition. Let $f: X \to f(X) = Y$ be a function from one topological space onto another and let

$$R = \{(x,y) \in X \times X : f(x) = f(y)\}.$$

It is clear that R is an equivalence relation on X. The quotient space X/R is called the **point inverse decomposition by** f and is denoted X/f.

Theorem 11.7. Suppose $f: X \to f(X) = Y$ is continuous, and let $p: X \to X/f$ be the natural map onto the point inverse decomposition by f. The the function

$$h: X/f \rightarrow Y$$

given by h(p(x)) = f(x) is a homeomorphism if and only if f is a quotient map.