Chapter Fourteen - Pseudormed Linear Spaces

Definition. Suppose X is a linear space. A **pseudonorm** for X is a real-valued function $p : X \to \mathbf{R}$ such that i) $p(x) \ge 0$ for all $x \in X$; ii) p(0) = 0; iii) p(tx) = |t|p(x) for all scalars t and $x \in X$; iv) $p(x + y) \le p(x) + p(y)$.

Proposition 14.1. If X is a linear space and p is a pseudonorm for X, then the function $d: X \times X \rightarrow \mathbf{R}$ defined by d(x,y) = p(x-y) is a pseudometric. [It is usually called the pseudometric generated by p. The topology generated by by the pseudometric d is also said to be generated by the pseudonorm p.]

Proposition 14.2. The topology on a linear space X generated by a pseudonorm is a linear space topology for X; that is, X endowed with this topology is a topological linear space. [In this case, X is called a **pseudonormed linear space**.].

Definition. A pseudonorm p such that p(x) = 0 only if x = 0 is called a **norm**. A linear space endowed with a norm is a **normed linear space**.

Note. Where there is no danger of confusion, p(x) is usually denoted |x|.

Proposition 14.3. A pseudometric generated by a norm is a metric.

Definition. A subset *S* of a pseudonormed space is said to be **bounded** if there is an *M* so that $|s| \leq M$ for every $s \in S$.

Theorem 14.4. Suppose $f : X \to Y$ is a linear function from from one pseudonormed linear space into another. Let $B = \{x \in X : |x| \le 1\}$. Then *f* is continuous if and only if f(B) is bounded. [The topologies involved are the ones generated by the pseudonorms.]

Proposition 14.5. If X is a linear space, the collection of all linear functionals on X with the obvious definitions of addition and scalar multiplication is a linear space $X^{\#}$.

Definition. If X is a topological linear space, the subspace X' of $X^{\#}$ consisting of the continuous linear functionals is known as the **dual space** of X.

Theorem 14.6. If X a pseudonormed space, the function $q : X' \rightarrow \mathbf{R}$ defined by

$$q(f) = \sup\{|f(x)| : |x| \le 1\}$$

is a norm for X'. [The space X' endowed with this norm is called the **conjugate space** of X, and

is usually denoted X^* . It is also traditional to write q(f) as |f|.]

Note. The vertical bar $|\cdot|$ has many different meanings. The context will generally make it clear which is intended.

Proposition 14.7. If *f* a continuous linear functional on the pseudonormed space *X*, then $|f(x)| \le |f||x|$ for all $x \in X$.

Theorem 14.8. If X is a pseudonormed space, the conjugate space X^* is a complete space.

Definition. A complete normed linear space is a Banach space.

Proposition 14.9. Let $a \in X$, a pseudonormed linear space. Define the function $\hat{a} : X^* \to \mathbf{R}$ by $\hat{a}(f) = f(a)$. Then \hat{a} is a continuous linear functional on X^* .(Or, in other words, $\hat{a} \in X^{**}$.)

Proposition 14.10. Suppose X is a normed real linear space and suppose $a, b \in X$ and $a \neq b$. The there is a continuous linear functional f on X such that $f(a) \neq f(b)$.

Proposition 14.11. Suppose X is a normed real linear space. If $a \in X$ and $a \neq 0$, then there is a continuous linear functional f on X so that f(a) = |a| and |f| = 1.

Theorem 14.12. Let X be a pseudonormed real linear space and let $h : X \to X^{**}$ be defined by $h(a) = \hat{a}$. Then h is a linear homeomorphism into X^{**} .[The linear homeomorphism h is called the **natural embedding** of X into X^{**} .]

Definition. A pseudonormed linear space X is said to be **reflexive** if $h(X) = X^{**}$.

Proposition 14.13. A reflexive pseudonormed linear space is a Banach space.

Proposition 14.14. If X is a finite dimensional real linear space, then $\dim X = \dim X^{\#}$.

Theorem 14.15. If *X* is a finite dimensional normed real linear space, then

 $\dim X = \dim X^* = \dim X^{**}.$

Theorem 14.16. A finite dimensional normed real linear space is reflexive, and hence complete.

Theorem 14.17. Every linear functional on a finite dimensional real linear space is continuous.

Proposition 14.18. Let $a = (a_1, a_2, ..., a_n) \in \mathbf{R}^n$, and let *p* be defined by

$$p(a) = \sum_{i=1}^n |a_i|.$$

Then p is a norm for \mathbf{R}^n .

Proposition 14.19. Suppose $\{e_1, e_2, \dots, e_n\}$ is a base for the normed linear space *X*, and let $h : \mathbb{R}^n \to X$ be defined by

$$h(a_1,a_2,\ldots,a_n)=\sum_{i=1}^n a_i e_i.$$

Then *h* is a linear homeomorphism of \mathbf{R}^n onto *X*.

Theorem 14.20. Any two *n* –dimensional normed linear spaces are linearly homeomorphic.

Corollary 14.21. All norms for a finite dimensional linear space generate the same topology.