Chapter Three - Connected Spaces

Definition. A topological space X is **disconnected** if there exist nonempty sets A and B such that $X = A \cup B$ and $A \cap clB = (clA) \cap B = \emptyset$. A space that is not disconnected is said to be **connected**.

Theorem 3.1. A space is disconnected if and only if it has a proper subset that is both open and closed.

Proposition 3.2. The interval [0, 1] is connected. (Usual topology, of course.)

Proposition 3.3. Let $\Gamma = \{0, 1\}$ be the two point discrete space. A space *X* is disconnected if and only if there is a continuous function from *X* onto Γ .

Theorem 3.4. Suppose **C** is a collection of connected subsets of a space and suppose there is a $C^* \in \mathbf{C}$ such that $C \cap C^* \neq \emptyset$ for every $C \in \mathbf{C}$. Then $\bigcup \mathbf{C}$ is connected.

Theorem 3.5. Suppose **C** is a collection of connected subsets of a space and suppose $C \cap D \neq \emptyset$ for all $C, D \in \mathbf{C}$. Then $\bigcup \mathbf{C}$ is connected.

Examples 3.6.

a)The real line with the usual topology is connected. b)Euclidean *n* –space is connected.

Theorem 3.7. If *A* is a connected subset of a space and $A \subset B \subset clA$, then *B* is connected.

Theorem 3.8. If $f: X \to Y$ is continuous and X is connected, then f(X) is connected.

Proposition 3.9. Let *X* be a topological space and define the relation *R* on *X* by

 $R = \{(a,b) : \text{there is a connected subset of } X \text{ containing } a \text{ and } b.\}$

Then *R* is an equivalence relation.

Definition. For the equivalence relation R defined in Proposition 3.9, the equivalence classes are called **components** of X.

Theorem 3.10. Each component of a space is closed and connected.

Definition. A continuous function $f : [0, 1] \rightarrow X$ is a **path** in *X*.

Definition. A space X is **path connected** if for each x and y in X, there is a path f in X such that f(0) = x and f(1) = y.

Theorem 3.11. Every path connected space is connected.

Theorem 3.12. Every open connected subset of Euclidean n –space is path connected.

Theorem 3.13. If X is path connected and $f: X \to Y$ is continuous, then f(X) is path connected.