Chapter Eight - Linear Spaces

Definition. A **linear space** X is a set for which are defined an addition + making X an abelian group, and multiplication by scalars, satisfying the distributive laws t(x + y) = tx + ty and (s + t)x = sx + tx, where t and s are scalars, $x, y \in X$, and satisfying (st)x = s(tx) and 1x = x.

Note. "Scalars" means complex numbers unless otherwise indicated.

Definition. A **linear subspace** of a linear space is a subset which with the same operations and scalars is a linear space.

Definition. A function $f : X \to Y$ from one linear space into another is a **linear function** if f(x + y) = f(x) + f(y) and f(tx) = tf(x) for all scalars *t* and all $x, y \in X$.

Definition. A set $M \subset X$, a linear space, is a **linear variety** if

 $M = x_0 + M_0 = \{x_0 + y : y \in M_0\}$

for some $x_0 \in X$ and some linear subspace M_0 .

Definition. A set $C \subset X$ is convex if $tx + (1 - t)y \in C$ for all $x, y \in C$ and $0 \le t \le 1$.

Proposition 8.1. A linear variety is convex.

Proposition 8.2. Suppose X is a linear space, $a \in X$, $a \neq 0$, and $M = \{ta : all t\}$. Then M is a linear subspace. [M is traditionally called a **straight line through 0.**]

Definition. Linear subspaces *M* and *N* of a linear space *X* are said to be **complementary** if $M \cap N = \{0\}$ and X = M + N.

Note. If *A* and *B* are subsets of a linear space, $A + B = \{a + b : a \in A \text{ and } b \in B\}$. **Theorem 8.3.** Subspaces *M* and *N* of a linear space *X* are complementary if and only if each $x \in X$ can be expressed uniquely as x = m + n, where $m \in M$ and $n \in N$.

Definition. A linear subspace complementary to a straight line through 0 is known as a **hyperplane through 0**.

Definitions. A linear variety $M = x_0 + M_0$ is a **straight line** if M_0 is a straight line through 0, and is a **hyperplane** if M_0 is a hyperplane through 0.

Theorem 8.4. A linear subspace M_0 of a space X is a hyperplane through 0 if and only if there is a nonconstant linear function $f: X \to S$ from X into the scalars such that $M_0 = f^{-1}(0)$.

Note. A linear function from a linear space into the scalars is frequently called a linear functional.

Corollary 8.5. A linear variety $M \subset X$ is a hyperplane if and only if there is a nonconstant linear function $f: X \to S$ from X into the scalars such that $M = f^{-1}(t)$ for some scalar t.

Theorem 8.6. Suppose N_0 is a linear subspace of the linear space X, and M_0 is a hyperplane through 0. If $M_0 \subset N_0$, then either $M_0 = N_0$ or $N_0 = X$.

Definition. Suppose X is a linear space that is also a topological space, and suppose the scalars are endowed with the usual topology. Then X is a **linear topological space** if the functions $F : X \times X \to X$, and $G : S \times X \to X$ given by F(x,y) = x + y and G(t,x) = tx are both continuous.

Proposition 8.7. Let M_0 be a linear subspace of a linear topological space X, and let $x_0 \in X$. Then the function $f: M_0 \to M = x_0 + M_0$ given by $f(m) = x_0 + m$ is a homeomorphism.

Theorem 8.8. In a linear topological space, the closure of a linear subspace is a linear subspace.

Corollary 8.9. In a linear topological space, the closure of a linear variety is a linear variety.

Theorem 8.10. Suppose M is a hyperplane in a linear topological space. If M is not closed, it is dense.

Theorem 8.11. Suppose *M* is a hyperplane in a linear topological space *X*, and suppose $f: X \to S$ is a linear function into the scalars such that $M = f^{-1}(t)$ for some scalar *t*. Then *M* is closed if and only if *f* is continuous.