Math 4640A Final Examination 8/7/99

1. a)Find an upper triangular system equivalent with the system:

							$0 2\lambda 2(1+\lambda) 9 7$						
							1 2 3 λ 1						
							$0 2\lambda 2\lambda \qquad 9 -3$						
							1 0 1 0 0						
						L							
Γ	0	2λ	2(1 + 2	λ) 9	7		$\boxed{\begin{array}{cccc} 1 & 2 & 3 & \lambda & 1 \end{array}}$						
	1	2	3	λ	1		$0 2\lambda 2(1+\lambda) 9 7$						
	0	2λ	2λ	9	-3	→	$\left \begin{array}{cccc} 0 & 2\lambda & 2\lambda & 9 & -3 \end{array}\right \xrightarrow{\rightarrow}$						
	1	0	1	0	0		1 0 1 0 0						
Ē	1	2	3	2		י ר							
	1	2	$\frac{3}{2(1+1)}$	λ 1) Ω	1								
	0	2λ	2(1+2	r) 9	/	\rightarrow	$\rightarrow \qquad 0 -2 -2 -\lambda -1 \rightarrow $						
	0	2λ	2λ	9	-3		$0 2\lambda 2(1+\lambda) 9 7$						
	0	-2	-2	-,	λ -1		$\begin{bmatrix} 0 & 2\lambda & 2\lambda & 9 & -3 \end{bmatrix}$						
Γ	1	2	3λ		1	٦							
	0	-2	-2 -2	ર	-1								
	0	0	2 9	$-\lambda^2$	$7 - \lambda$								
	0	0	0 9	$-\lambda^2$	$-3 - \lambda$								

b)Find all λ for which there are solutions, and find all solutions.

First, if $9 - \lambda^2 \neq 0$, or $\lambda \neq 3, -3$, the coefficient matrix is invertible and there is exactly one solution for each value of $\lambda \neq 3, -3$:

$$\begin{aligned} x_4 &= \frac{-3-\lambda}{9-\lambda^2} = \frac{1}{\lambda-3} \ ; x_3 &= \frac{1}{2} \left(7 - \lambda - \frac{9-\lambda^2}{\lambda-3} \right) = 5; \\ x_2 &= -\frac{1}{2} \left(-1 + 10 + \frac{\lambda}{\lambda-3} \right) = -\frac{1}{2} \frac{10\lambda-27}{\lambda-3} \ ; \ x_1 = -5. \end{aligned}$$

Second, suppose $\lambda = -3$. Then the upper triangular system looks like

Then $0x_4 = 0$, and we see that x_4 can be anything, say $x_4 = t$. Now $x_3 = 5$; $x_2 = -\frac{1}{2}(-1+10-3t) = -\frac{9}{2} + \frac{3}{2}t$; and $x_1 = 1 + 3t - 15 + 2\left(-\frac{9}{2} + \frac{3}{2}t\right) = -23 + 6t.$

Finally, for $\lambda = 3$, the last equation becomes $0x_4 = -6$, which clearly has no solutions!

To summarize our results, the system has solutions for every $\lambda \neq 3$, and the solutions are found above.

2. Consider sequences defined by x_{n+1} = 2 - (1 + k)x_n + kx_n³.
a)How do you know that if the sequence converges, it converges to 1?

Note simply that 1 is a fixed point of the right-hand side: $g(x) = 2 - (1 + k)x + kx^3$.

b)For what values of k can you be sure the sequence will converge for all initial x_0 sufficiently close to 1?

Let's simply look at |g'(1)|: $g'(x) = -1 - k + 3kx^2$, and so g'(1) = -1 + 2k. We thus want to know for what k will

|-1+2k| < 1.

This means that we want

0 < k < 1

c)For what *k* is the convergence of order 2?

In other words, for what k is g'(1) = 0 and $g''(1) \neq 0$? g'(1) = -1 + 2k, and g''(x) = 6kx.

Thus, for $k = \frac{1}{2}$ the order of convergence is 2. d)For what *k* is the order of convergence 3?

g''(1) = 6k, and k = 0 is the only value of k for which this is zero-but the sequence will not converge for this value of k. There are therefore no values of k that give order of convergence 3.

3. If you use Newton's method to solve

$$x^2 - xy + y^2 = 14$$
$$2x^2 + y^2 = 9$$

with an initial guess of $(x_0, y_0) = (1, 3)$, what is the next iterate, (x_1, y_1) ?

Our system is

$$\mathbf{F}(x,y) = \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix} = \begin{bmatrix} 14 \\ 9 \end{bmatrix},$$

where

$$f_1(x,y) = x^2 - xy + y^2 - 14$$
 and $f_2(x,y) = 2x^2 + y^2 - 9$. The derivative $\mathbf{F}'(x,y)$ is
 $\mathbf{F}'(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x - y & -x + 2y \\ 4x & 2y \end{bmatrix}$.

Thus,

.

$$\mathbf{F}'(1,3) = \begin{bmatrix} -1 & 5 \\ 4 & 6 \end{bmatrix}.$$

Now, for Newton's method, we know that $\mathbf{x}_1 = (x_1, y_1) = (x_0, y_0) + (\Delta x, \Delta y)$, where

$$\mathbf{F}'(1,3) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = -\mathbf{F}(1,3).$$

Or,

$$\begin{bmatrix} -1 & 5 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$$

Solving this is easy:

-1	5	Δx	٦_	Γ	7	٦	
0	26	Δy		L	26		•

Thus,

 $\Delta y = 1$, and $\Delta x = -(7 - 5) = -2$

Hence we have it:

$$(x_1, y_1) = (1, 3) + (-2, 1) = (-1, 4).$$

4. a)Find the maximum value of w(x) = |x(x-h)(x-2h)| on the interval [0, 2h].

This is, of course, simply an elementary calculus problem. Note that w(0) = w(2h) = 0 so that the maximum value of w on the interval will occur where the derivative of the function $f(x) = x(x-h)(x-2h) = x^3 - 3x^2h + 2xh^2$ is zero. Let's find where this is:

$$f'(x) = 3x^2 - 6xh + 2h^2$$

This is zero at

$$x = \left(1 + \frac{1}{3}\sqrt{3}\right)h$$
, and $x = \left(1 - \frac{1}{3}\sqrt{3}\right)h$

Now,

$$f(\left(1+\frac{1}{3}\sqrt{3}\right)h) = h^{3}\left[\left(1+\frac{1}{3}\sqrt{3}\right)\left(\frac{1}{3}\sqrt{3}\right)\left(-1+\frac{1}{3}\sqrt{3}\right)\right]$$
$$= -\frac{2}{9}\sqrt{3}h^{3}.$$

Also,

$$f\left(\left(1-\frac{1}{3}\sqrt{3}\right)h\right) = \frac{2}{9}\sqrt{3}h^3$$

The maximum value of w(x) is thus

$$\frac{2}{9}\sqrt{3}h^3$$

b)We know the error from quadratic interpolation to be given by

$$E = |f(x) - p(x)| = \left| \frac{f^{(3)}(\xi)}{3!} (x - x_0)(x - x_0 - h)(x - x_0 - 2h) \right|,$$

where $0 \le \xi \le \pi/2$. For $f(x) = \sin x$, we have $f^{(3)}(x) = -\cos x$. Thus,

$$E \leq \frac{1}{6} |\cos \xi|| (x - x_0) (x - x_0 - h) (x - x_0 - 2h)|$$

$$\leq \frac{1}{6} |(x - x_0) (x - x_0 - h) (x - x_0 - 2h)|.$$

Let $t = x - x_0$, and we have

$$(x-x_0)(x-x_0-h)(x-x_0-2h) = t(t-h)(t-2h),$$

and so using the result of part a), we have

$$E \le \frac{1}{6} \frac{2}{9} \sqrt{3} h^3 = \frac{h^3}{9\sqrt{3}}$$

We can be sure $E \le 10^{-6}$ by choosing *h* so that

$$\frac{h^3}{9\sqrt{3}} < 10^{-6},$$

or,

$$h < 3^{5/6} \bullet 10^{-2}.$$

The number of table entries *N* should therefore be

$$N \ge \frac{\pi/2}{h} > \frac{\pi/2}{3^{5/6}} 100 = \frac{100}{6} \pi \sqrt[6]{3} \approx 62.88$$

Hence we need at least 63 table entries.