Math 2507A Quiz Two ## **Solutions** 1. Let V be the volume of the solid bounded below by $z = x^2 + y^2$ and bounded above by z = 4. a)Give an iterated integral for V in which the first, or "inside" integration is with respect to z. 2 -1 y x 1 -2 -1 - When we project onto the x - y plane, we see $4 = x^2 + y^2$, a circle of radius 2, centered at the origin: Then $V = \iint_C \left(\int_{x^2+y^2}^4 dz \right) dA$, where C is the region enclosed by the circle $x^2 + y^2 = 4$. There are several correct ways to proceed. In rectangular coordinates, we have $$V = \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} dz dy dx, \text{ or }$$ $$V = \int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{x^2+y^2}^{4} dz dx dy, \text{ or }$$ In polar coordinates: $$V = \int_{0}^{2\pi} \int_{0}^{2} \int_{r^2}^{4} r dz dr d\theta$$ a)Give an iterated integral for V in which the first, or "inside" integration is with respect to x. Now we project the solid onto the y - z plane: Now, $V = \iint_R \left(\int_{-\sqrt{z-y^2}}^{\sqrt{z-y^2}} dx \right)$, where *R* is the region in the picture. Thus we have either $$V = \int_{-2}^{2} \int_{y^{2}}^{4} \int_{-\sqrt{z-y^{2}}}^{\sqrt{z-y^{2}}} dx dz dy, \text{ or }$$ $$V = \int_{0}^{4} \int_{-\sqrt{z}}^{\sqrt{z}} \int_{-\sqrt{z-y^2}}^{\sqrt{z-y^2}} dx dy dz, \text{ or }$$ **2**. A wire has the shape of the curve $y = x^3$, for $0 \le x \le 2$. The density of the wire is given by $\rho(x,y) = 3x^3 + y$. Find the mass of the wire. The mass *M* is simply $\int_{W} \rho(x, y) dr$. So, $$M = \int_{W} \rho(x, y) dr = \int_{a}^{b} \rho(\mathbf{r}(t)) |\mathbf{r}'(t)| dt,$$ where $\mathbf{r}(t)$, $a \le t \le b$, is a vector description of the curve $y = x^3$. For a vector description, simply use t = x: $$\mathbf{r}(t) = t\mathbf{i} + t^3\mathbf{j}, \ 0 \le t \le 2.$$ Now, $\mathbf{r}'(t) = \mathbf{i} + 3t^2 \mathbf{j}$, and so $|\mathbf{r}'(t)| = \sqrt{1 + 9t^4}$. Next, we have $\rho(\mathbf{r}(t)) = 3t^3 + t^3 = 4t^3$, and so our integral becomes $$M = \int_{a}^{b} \rho(\mathbf{r}(t))|\mathbf{r}'(t)|dt = \int_{0}^{2} 4t^{3} \sqrt{1 + 9t^{4}} dt$$ $$= \frac{2}{27} (1 + 9t^{4})^{3/2} \Big|_{0}^{2} = \frac{2}{27} [(145)^{3/2} - 1]$$ $$= \frac{290}{27} \sqrt{145} - \frac{2}{27}$$ **Finis**