You may use any books, notes, or calculators you wish. Fortuna vobiscum..

1. Find all z such that  $e^z = 1 + i$ .

**2.** For the given function u, find a function v such that f(z) = u(x, y) + iv(x, y) is entire, or explain carefully why there is no such v.

a)  $u(x, y) = x^2 - x - y^2$ 

b)  $u(x, y) = x^2 - x - y^3$ 

3. Let S be the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1). Find the maximum value of  $\left|\frac{z-1}{z+5}\right|$  for z in S.

**4.** Let  $f(z) = \frac{1}{z^2(z-i)}$ .

- a) Find a Laurent series expansion in powers of z for f, and specify the region for which it is valid.
- b) Find another Laurent series expansion in powers of z for f, and specify the region for which it is valid.
- c) Let C be the circle C = {z : |z| = 1/2 } oriented positively. Find  $\frac{1}{c^2(z-i)}dz$ .
- d) Let C be the circle C = {z : |z| = 3/2 } oriented positively. Find  $\frac{1}{c^2(z-i)}dz$ .
- **5.** Find  $\int_{0}^{1} \frac{1}{x^4 + 1} dx$ .