
Chapter Eight

Series

8.1. Sequences. The basic definitions for complex sequences and series are essentially the
same as for the real case. A sequence of complex numbers is a function g : Z  C from
the positive integers into the complex numbers. It is traditional to use subscripts to indicate
the values of the function. Thus we write gn  zn and an explicit name for the sequence
is seldom used; we write simply zn to stand for the sequence g which is such that
gn  zn. For example,  in  is the sequence g for which gn  i

n .

The number L is a limit of the sequence zn if given an   0, there is an integer N such
that |zn  L|   for all n  N. If L is a limit of zn, we sometimes say that zn
converges to L. We frequently write limzn  L. It is relatively easy to see that if the
complex sequence zn  un  ivn converges to L, then the two real sequences un and
vn each have a limit: un converges to ReL and vn converges to ImL. Conversely, if
the two real sequences un and vn each have a limit, then so also does the complex
sequence un  ivn. All the usual nice properties of limits of sequences are thus true:

limzn  wn  limzn  limwn;
limznwn  limzn limwn; and

lim zn
wn  limzn

limwn
.

provided that limzn and limwn exist. (And in the last equation, we must, of course,
insist that limwn  0.)

A necessary and sufficient condition for the convergence of a sequence an is the
celebrated Cauchy criterion: given   0, there is an integer N so that |an  am |  
whenever n,m  N.

A sequence fn of functions on a domain D is the obvious thing: a function from the
positive integers into the set of complex functions on D. Thus, for each zD, we have an
ordinary sequence fnz. If each of the sequences fnz converges, then we say the
sequence of functions fn converges to the function f defined by fz  limfnz. This
pretty obvious stuff. The sequence fn is said to converge to f uniformly on a set S if
given an   0, there is an integer N so that |fnz  fz|   for all n  N and all z  S.

Note that it is possible for a sequence of continuous functions to have a limit function that
is not continuous. This cannot happen if the convergence is uniform. To see this, suppose
the sequence fn of continuous functions converges uniformly to f on a domain D, let
z0D, and let   0. We need to show there is a  so that |fz0  fz|   whenever
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|z0  z|  . Let’s do it. First, choose N so that |fNz  fz|  
3 . We can do this because

of the uniform convergence of the sequence fn. Next, choose  so that
|fNz0  fNz|  

3 whenever |z0  z|  . This is possible because fN is continuous.
Now then, when |z0  z|  , we have

|fz0  fz|  |fz0  fNz0  fNz0  fNz  fNz  fz|
 |fz0  fNz0|  |fNz0  fNz|  |fNz  fz|
 
3  

3  
3  ,

and we have done it!

Now suppose we have a sequence fn of continuous functions which converges uniformly

on a contour C to the function f. Then the sequence 
C
fnzdz converges to 

C
fzdz. This

is easy to see. Let   0. Now let N be so that |fnz  fz|  
A for n  N, where A is the

length of C. Then,


C

fnzdz  
C

fzdz  
C

fnz  fzdz

 
A A  

whenever n  N.

Now suppose fn is a sequence of functions each analytic on some region D, and suppose
the sequence converges uniformly on D to the function f. Then f is analytic. This result is in
marked contrast to what happens with real functions—examples of uniformly convergent
sequences of differentiable functions with a nondifferentiable limit abound in the real case.
To see that this uniform limit is analytic, let z0D, and let S  z : |z  z0 |  r  D . Now
consider any simple closed curve C  S. Each fn is analytic, and so 

C
fnzdz  0 for every

n. From the uniform convergence of fn , we know that 
C
fzdz is the limit of the sequence


C
fnzdz , and so 

C
fzdz  0. Morera’s theorem now tells us that f is analytic on S, and

hence at z0. Truly a miracle.

Exercises
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1. Prove that a sequence cannot have more than one limit. (We thus speak of the limit of a
sequence.)

2. Give an example of a sequence that does not have a limit, or explain carefully why there
is no such sequence.

3. Give an example of a bounded sequence that does not have a limit, or explain carefully
why there is no such sequence.

4. Give a sequence fn of functions continuous on a set D with a limit that is not
continuous.

5. Give a sequence of real functions differentiable on an interval which converges
uniformly to a nondifferentiable function.

8.2 Series. A series is simply a sequence sn in which sn  a1  a2 an. In other
words, there is sequence an so that sn  sn1  an. The sn are usually called the partial

sums. Recall from Mrs. Turner’s class that if the series 
j1

n
aj has a limit, then it must be

true that
n
lim an  0.

Consider a series 
j1

n
fjz of functions. Chances are this series will converge for some

values of z and not converge for others. A useful result is the celebratedWeierstrass
M-test: Suppose Mj is a sequence of real numbers such thatMj  0 for all j  J, where

J is some number., and suppose also that the series 
j1

n
Mj converges. If for all zD, we

have |fjz|  Mj for all j  J, then the series 
j1

n
fjz converges uniformly on D.

To prove this, begin by letting   0 and choosing N  J so that


jm

n

Mj  

for all n,m  N. (We can do this because of the famous Cauchy criterion.) Next, observe
that
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
jm

n

fjz  
jm

n

|fjz|  
jm

n

Mj  .

This shows that 
j1

n
fjz converges. To see the uniform convergence, observe that


jm

n

fjz  
j0

n

fjz 
j0

m1

fjz  

for all zD and n  m  N. Thus,

n
lim 

j0

n

fjz 
j0

m1

fjz  
j0



fjz 
j0

m1

fjz  

for m  N.(The limit of a series 
j0

n
aj is almost always written as

j0


aj.)

Exercises

6. Find the set D of all z for which the sequence zn
zn3n has a limit. Find the limit.

7. Prove that the series 
j1

n
aj converges if and only if both the series 

j1

n
Reaj and


j1

n
Imaj converge.

8. Explain how you know that the series 
j1

n
 1z 

j converges uniformly on the set

|z|  5.

8.3 Power series.We are particularly interested in series of functions in which the partial
sums are polynomials of increasing degree:

snz  c0  c1z  z0  c2z  z02 cnz  z0n.
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(We start with n  0 for esthetic reasons.) These are the so-called power series. Thus,

a power series is a series of functions of the form 
j0

n
cjz  z0 j .

Let’s look first at a very special power series, the so-called Geometric series:


j0

n

zj .

Here
sn  1  z  z2 zn, and
zsn  z  z2  z3 zn1.

Subtracting the second of these from the first gives us

1  zsn  1  zn1.

If z  1, then we can’t go any further with this, but I hope it’s clear that the series does not
have a limit in case z  1. Suppose now z  1. Then we have

sn  1
1  z 

zn1
1  z .

Now if |z|  1, it should be clear that limzn1  0, and so

lim 
j0

n

zj  limsn  1
1  z .

Or,


j0



zj  1
1  z , for |z|  1.

There is a bit more to the story. First, note that if |z|  1, then the Geometric series does
not have a limit (why?). Next, note that if |z|    1, then the Geometric series converges
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uniformly to 1
1z . To see this, note that


j0

n

j

has a limit and appeal to the Weierstrass M-test.

Clearly a power series will have a limit for some values of z and perhaps not for others.
First, note that any power series has a limit when z  z0. Let’s see what else we can say.

Consider a power series 
j0

n
cjz  z0 j . Let

  lim sup j |cj | .

(Recall from 6th grade that lim supak  limsupak : k  n. ) Now let R  1
 . (We

shall say R  0 if   , and R   if   0. ) We are going to show that the series
converges uniformly for all |z  z0 |    R and diverges for all |z  z0 |  R.

First, let’s show the series does not converge for |z  z0 |  R. To begin, let k be so that

1
|z  z0 |

 k  1
R  .

There are an infinite number of cj for which j |cj |  k, otherwise lim sup j |cj |  k. For
each of these cj we have

|cjz  z0 j |  j |cj | |z  z0 |
j
 k|z  z0 | j  1.

It is thus not possible for
n
lim |cnz  z0n |  0, and so the series does not converge.

Next, we show that the series does converge uniformly for |z  z0 |    R. Let k be so
that

  1
R  k  1

 .

Now, for j large enough, we have j |cj |  k. Thus for |z  z0 |  , we have
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|cjz  z0 j |  j |cj | |z  z0 |
j
 k|z  z0 | j  k j.

The geometric series 
j0

n
k j converges because k  1 and the uniform convergence

of 
j0

n
cjz  z0 j follows from the M-test.

Example

Consider the series 
j0

n
1
j! z

j . Let’s compute R  1/ lim sup j |cj |  lim sup j j! . Let

K be any positive integer and choose an integer m large enough to insure that 2m  K2K
2K! .

Now consider n!
Kn , where n  2K  m:

n!
Kn  2K  m!

K2Km
 2K  m2K  m  1 2K  12K!

KmK2K

 2m 2K!
K2K

 1

Thus n n!  K. Reflect on what we have just shown: given any number K, there is a
number n such that n n! is bigger than it. In other words, R  lim sup j j!   , and so the

series 
j0

n
1
j! z

j converges for all z.

Let’s summarize what we have. For any power series 
j0

n
cjz  z0 j , there is a number

R  1
lim sup j |cj |

such that the series converges uniformly for |z  z0 |    R and does not

converge for |z  z0 |  R. (Note that we may have R  0 or R  .) The number R is
called the radius of convergence of the series, and the set |z  z0 |  R is called the circle
of convergence. Observe also that the limit of a power series is a function analytic inside
the circle of convergence (why?).

Exercises

9. Suppose the sequence of real numbers  j has a limit. Prove that
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lim sup j  lim j.

For each of the following, find the set D of points at which the series converges:

10. 
j0

n
j!zj .

11. 
j0

n
jzj .

12. 
j0

n
j2

3j
zj .

13. 
j0

n
1j

22jj!2
z2j

8.4 Integration of power series. Inside the circle of convergence, the limit

Sz 
j0



cjz  z0 j

is an analytic function. We shall show that this series may be integrated
”term-by-term”—that is, the integral of the limit is the limit of the integrals. Specifically, if
C is any contour inside the circle of convergence, and the function g is continuous on C,
then


C

gzSzdz 
j0



cj 
C

gzz  z0 jdz.

Let’s see why this. First, let   0. Let M be the maximum of |gz| on C and let L be the
length of C. Then there is an integer N so that


jn



cjz  z0 j  
ML
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for all n  N. Thus,


C

gz
jn



cjz  z0 j dz  ML 
ML  ,

Hence,


C

gzSzdz 
j0

n1

cj 
C

gzz  z0 jdz  
C

gz
jn



cjz  z0 j dz

 ,

and we have shown what we promised.

8.5 Differentiation of power series. Again, let

Sz 
j0



cjz  z0 j.

Now we are ready to show that inside the circle of convergence,

Sz 
j1



jcjz  z0 j1.

Let z be a point inside the circle of convergence and let C be a positive oriented circle
centered at z and inside the circle of convergence. Define

gs  1
2is  z2

,

and apply the result of the previous section to conclude that
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
C

gsSsds 
j0



cj 
C

gss  z0 jds, or

1
2i 

C

Ss
s  z2

ds 
j0



cj 12i 
C

s  z0 j
s  z2

ds. Thus

Sz 
j0



jcjz  z0 j1,

as promised!

Exercises

14. Find the limit of


j0

n

j  1zj .

For what values of z does the series converge?

15. Find the limit of


j1

n
zj
j .

For what values of z does the series converge?

16. Find a power series 
j0

n
cjz  1 j such that

1
z 

j0



cjz  1 j, for |z  1|  1.

17. Find a power series 
j0

n
cjz  1 j such that
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Log z 
j0



cjz  1 j, for |z  1|  1.
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